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Optimal heating

Let Ω be a bounded domain in R3 with boundary Γ which represents a body that has to be

heated. We may act along the boundary by setting a temperature u = u(x).

The goal of the problem consists in getting as close as possible to a given desired temperature

zd(x) in Ω.
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Optimal heating

min J(y,u) :=
1
2

∫
Ω

(y(x)− zd(x))2dx +
α

2

∫
Γ

u(x)2 ds,

subject to:

−∆y = 0 in Ω,

∂y

∂n
= λ(u − y) in Γ,

 State equation.

ua(x) ≤ u(x) ≤ ub(x). Control constraints.

The scalar α > 0 can be interpreted as a control cost, which also lead to more regular solutions

of the optimization problem. The function λ represents the heat transfer along the boundary.
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Forward facing step channel

Uncontrolled Navier-Stokes flow Re = 1000.

Goal: reduce recirculatons, delay transition to turbulence
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Problem

min J(y,u) =
1
2

∫
Ω

|y− zd|2 dx +
α

2

∫
Γ1

|u|2 ds

subject to

− ν∆y + (y · ∇)y +∇p = f

div y = 0
y|Γ1 = u

(boundary control)

y|Γ\Γ1 = g

(P)
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Controlled flow
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Wing configuration
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Adapted mesh
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Problem

min J(y,u) =

∫
Γb

(ν∂~ny− p~n) ~el ds

sujeto a:

∂ty− ν∆y + (y · ∇)y +∇p = 0
div y = 0

y|Γ1 = u = a sin(2πf (t − t0))

(
cos(β − δ)
sin(β − δ)

)
y|Γ\Γ1 = g,

(P)

where Γb is the boundary of the wing, a denotes the amplitude, f the frequence, β is the

suction angle and δ is the angle of the valve.
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Results
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Numerical weather prediction

Problem

The constitutive model is in general known, but not the initial condition.
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Primitive equations

Very basic model

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
−w

∂u

∂z
+

uv tan(φ)

a
− uw

a
− 1
ρ

∂p

∂x
− 2Ω(w cos(φ)− v sin(φ)) + Frx

∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
−w

∂v

∂z
+

u2 tan(φ)

a
− uw

a
− 1
ρ

∂p

∂y
− 2Ωu sin(φ) + Fry

∂w

∂t
= −u

∂w

∂x
− v

∂w

∂y
−w

∂w

∂z
+

u2 + v2

a
− 1
ρ

∂p

∂z
+ 2Ωu cos(φ)− g + Frz

∂T

∂t
= −u

∂T

∂x
− v

∂T

∂y
+ (γ − γd)w +

1
cp

dH

dt

∂ρ

∂t
= −u

∂ρ

∂x
− v

∂ρ

∂y
−w

∂ρ

∂z
− ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
∂q

∂t
= −u

∂q

∂x
− v

∂q

∂y
−w

∂q

∂z
+ Qv

+ Boundary conditions

+ Initial conditions
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Data assimilation

Goal

Data assimilation methods aim at finding a good initial condition of the athmospheric system in

order to get better weather forecasts

Information can be obtained mainly from ground stations, radionsonds or satellite images;

Reconstruction results depend strongly on the number of observations.
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DA approaches

Optimal interpolation

3D-Var

Ensemble Kalman filter

Hybrid methods
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Data assimilation

4D-Var

min J(y,u) =
1
2

n∑
i=1

[H(y(ti))− zd(ti)]
T R−1

i [H(y(ti))− zd(ti)]

+
1
2

[u − yb(t0)]T B−1[u − yb(t0)]

subject to

y(tj) = Mj(y(t0)), (system of PDEs)

y(t0) = u, (initial condition)

where zd are the observations, yb is the background vector, and Ri and B are the observation

and background error covariances, respectively.
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Operational use of 3D-Var
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An example in finite dimensions

Linear quadratic optimization problem
min J(y,u) = 1

2 ‖y− zd‖2 + α
2 ‖u‖

2

subject to:

Ay = u

u ∈ Uad,

(QP)

where y,u ∈ Rn correspond to the state and control variables, α > 0, Uad is a closed convex

set and A ∈Mn×n is invertible.

‖ · ‖ and (·, ·) stand for the euclidean norm and scalar product, respectively.

By introducing S = A−1 we obtain that y = Su and we may rewrite the cost function in the

following reduced form:

J(y,u) = J(Su,u) =: f (u).

As a consequence we obtain the following reduced optimization problem:

min
u∈Uad

f (u). (rQP)
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Existence of optimal solution

Definition

A vector ū ∈ Uad is called (local) optimal solution to (rQP) if

f (ū) ≤ f (u), ∀u ∈ Uad (∀u ∈ Uad ∩ Br(ū)).

Its correspondent state ȳ = Sū is called optimal state and the matrix S : Rn → Rn solution or

control-to-state operator.

Theorem

Let Uad be a non empty, closed and bounded set, and A an invertible matrix. Then there exists

at least an optimal control for (rQP)

Proof

Since J is continuous, it follows that the reduced cost f is also continuous. Since Uad is a closed

bounded subset of a finite dimensional space, it is compact and the result follows by

Weierstrass theorem.
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First order optimality condition

Theorem

Let ū be a local optimal solution for (rQP). Then it satisfies the variational inequality:

f ′(ū)(v − ū) ≥ 0, for all v ∈ Uad.

Proof

f is differentiable, Uad is convex and ū is a local optimal solution, i.e., f (ū) ≤ f (w),
∀w ∈ Uad ∩ Br(ū). Taking w = ū + t(v − ū), with 0 < t ≤ 1 and v − ū admissible,

0 ≤ f (ū + t(v − ū))− f (ū).

Dividing by t and taking the limit:

0 ≤ f (ū + t(v − ū))− f (ū)

t
t→0−→ f ′(ū)(v − ū).

Thanks to the strong convexity of the reduced cost function and the convexity of Uad,

the first order optimality condition is both necessary and sufficient.
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Dividing by t and taking the limit:
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t
t→0−→ f ′(ū)(v − ū).
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First technique

Replace y = A−1u and consider

min f (u) =
1
2
∥∥A−1u − zd

∥∥2
+
α

2
‖u‖2

Necessary condition:

(∇f (ū), v − ū) = (A−1ū − zd,A
−1(v − ū)) + α(ū, v − ū)

= (A−T (ȳ− zd)︸ ︷︷ ︸
=p

, v − ū) + α(ū, v − ū) ≥ 0,∀v ∈ Uad

or, equivalently,

AT p = ȳ− zd (adjoint equation)

(αū + p, v − ū) ≥ 0,∀v ∈ Uad (optimality condition)
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Second technique

Lagrangian:

L(y,u, p) =
1
2
‖y− zd‖2 +

α

2
‖u‖2 − (p,Ay− u).

Necessary condition:

Ly(w) = (y− zd,w)− (p,Aw) = (−AT p + y− zd,w) = 0

⇒ AT p = y− zd (adjoint equation)

Lu(v − u) = (αu, v − u) + (p, v − u) ≥ 0,∀v ∈ Uad

⇒ (αu + p, v − u) ≥ 0,∀v ∈ Uad (optimality condition)
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Optimality system

Let u be a local optimal solution to problem (QP). Then it satisfies:

Ay = u (state equation)

AT p = y− zd (adjoint equation)

(αu + p, v − u) ≥ 0,∀v ∈ Uad (optimality condition)

The optimality condition can also be expressed by means of the projection operator on a

convex set:

u = PUad (u − c(p + αu)) , ∀c > 0.

One frequent choice for Uad is given by the so-called box constraints

Uad = {u ∈ Rn : ua ≤ u ≤ ub},

where ua , ub ∈ Rn satisfy ua ≤ ub componentwise.
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Karush-Kuhn-Tucker

Theorem

Let (ȳ, ū) be an optimal pair and Uad = {u ∈ Rn : ua ≤ u ≤ ub}. Then there exist multipliers

p ∈ Rn and λa , λb ∈ Rn such that:

Aȳ = ū,

AT p = ȳ− zd,

αū + p − λa + λb = 0,

λa ≥ 0, λb ≥ 0,

λ>a (ua − ū) = λ>b (ū − ub) = 0,

ua ≤ ū ≤ ub.
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Proof

From the optimality condition we obtain that

(p + αū, ū) ≤ (p + αū,u) , ∀u ∈ Uad,

which implies that ū is solution of

min
u∈Uad

(p + αū,u) = min
u∈Uad

n∑
i=1

(p + αū)i ui .

Thanks to the special structure of Uad and the independence of the ui ’s, it then follows that

(p + αū)i · ūi = min
ua,i≤ui≤ub,i

(p + αū)i · ui

for i = 1, . . . , l. Consequently,

ūi =

{
ub,i if (p + αū)i < 0,
ua,i if (p + αū)i > 0.

(1)

Otherwise (p + αū)i = 0.
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Let us now define the multipliers:

λa := max
(
~0, p + αū

)
,

λb :=
∣∣min

(
~0, p + αū

)∣∣ , (2)

where max, min and | · | are considered componentwise. Then, it follows that

λa ≥ 0, ua − ū ≤ 0, (λa ,ua − ū) = 0,

λb ≥ 0, ū − ub ≤ 0, (λb, ū − ub) = 0,

which is called a complementary system. From (2) we then obtain that

λa − λb = p + αū.
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Complementarity function

The last three relations of the optimality system, namely,

λa ≥ 0, λb ≥ 0,

λ>a (ua − ū) = λ>b (ū − ub) = 0,
ua ≤ ū ≤ ub.

can be rewritten as

λa = −min(0, λa + c(u − a)), ∀c > 0
λb = max(0, λb + c(u − b)), ∀c > 0,

and the optimality system to be solved

Aȳ = ū,

AT p = ȳ− zd,

αū + p − λa + λb = 0,
λa = −min(0, λa + c(u − a))

λb = max(0, λb + c(u − b))
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Integration by parts

Let Ω ∈ RN be a bounded Lipschitz domain with boundary Γ. By applying Green’s formula,

with y, v ∈ C1(Ω), we obtain that∫
Ω

v(x)Diy(x) dx =

∫
Γ

v(x)y(x)ni(x) ds−
∫

Ω

y(x)Div(x) dx,

where ni(x) denotes the i-th component of the exterior normal vector to Ω at the point x ∈ Γ
and ds the Lebesgue surface measure at the boundary Γ.

If in addition v = 0 on Γ then∫
Ω

y(x)Div(x)dx = −
∫

Ω

v(x)Diy(x)dx.

More generally, we obtain the following formula∫
Ω

y(x)Dαv(x) dx = (−1)|α|
∫

Ω

v(x)Dαy(x)dx, with |α| ≤ k,

where α = (α1, . . . , αN) is a multi-index and Dα the corresponding diferentiation operator.
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Weak derivatives

Let L1
loc(Ω) denote the set of locally integrable functions on Ω, i.e., integrable on any

compact subset of Ω.

Definition

Let y ∈ L1
loc(Ω) and α a given multi-index. If there exists a function w ∈ L1

loc(Ω) such that∫
Ω

y(x)Dαv(x) dx = (−1)|α|
∫

Ω

w(x)v(x)dx,

for all v ∈ C∞0 (Ω), then w is called the derivative of order k of y in the weak sense or weak
derivative, and is denoted by w = Dαy.
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Example

y(x) = |x| in Ω = (−1,1). The weak derivative of y(x) is given by

y′(x) = w(x) =

{
−1 if x ∈ (−1,0),

1 if x ∈ [0,1).

Indeed, for v ∈ C∞0 (−1,1),

∫ 1

−1
|x|v′(x)dx =

∫ 0

−1
(−x)v′(x)dx +

∫ 1

0
xv′(x)dx

= −x.v(x)
∣∣∣0
−1
−
∫ 0

−1
(−1)v(x) + x.v(x)

∣∣∣1
0
−
∫ 1

0
1v(x)dx

= −
∫ 1

−1
w(x)v(x)dx.

Note that the value of y′ at the point x = 0 is not important since the set {x = 0} has zero

measure.
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Sobolev spaces

Definition

Let 1 ≤ p <∞ and k ∈ N. The space of functions y ∈ Lp(Ω) whose weak derivatives Dαy,

∀α : |α| ≤ k exist and belong to Lp(Ω) is denoted by W k,p(Ω) and is called Sobolev space.

This space is endowed with the norm

‖y‖W k,p(Ω) =

∑
|α|≤k

∫
Ω

|Dαy|p dx

1/p

.

If p =∞ the space W k,p(Ω) is defined in a similar way and endowed with the norm

‖y‖W k,p(Ω) = max
|α|≤k

‖Dαy‖L∞(Ω).

The spaces W k,p(Ω) constitute Banach spaces.
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In the special case p = 2 the Sobolev spaces are denoted by

Hk(Ω) := W k,2(Ω).

A frequently used space is

H1(Ω) = {y ∈ L2(Ω) : Diy ∈ L2(Ω), i = 1, . . . ,N}

endowed with the norm

‖y‖H1(Ω) =

(∫
Ω

(y2 + |∇y|2)dx

)1/2

with |∇y|2 = (D1y)2 + · · ·+ (DNy)2, and the scalar product

(u, v)H1(Ω) =

∫
Ω

u · v dx +

∫
Ω

∇u · ∇v dx.

The space H1(Ω) constitutes a Hilbert space with the provided scalar product.
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Definition

The closure of C∞0 (Ω) in W k,p(Ω) is denoted by W k,p
0 (Ω). The resulting space is endowed

with the W k,p norm and constitutes a closed subspace of W k,p(Ω).

Theorem

Let Ω ∈ RN be a bounded Lipschitz domain. There exist a bounded linear mapping

τ : W 1,p(Ω)→ Lp(Γ) such that

(τy)(x) = y(x) a.e. on Γ,

for each y ∈ C(Ω).

Definition

The function τy is called the trace of y on Γ and τ is called the trace operator.
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Consider the following problem: {
−∆y = f in Ω,

y = 0 on Γ.
(3)

Assuming y is a classical solution, multiplying (3) with a test function v ∈ C∞0 (Ω) and

integrating over Ω we obtain

−
∫

Ω

v∆y dx =

∫
Ω

fv dx,

which using integration by parts yields

−
∫

Ω

v∂~ny ds +

∫
Ω

∇y · ∇v dx =

∫
Ω

fv dx,

where ∂~ny = ∇y · ~n. Since v = 0 on Γ, it follows that∫
Ω

∇y · ∇v dx =

∫
Ω

fv dx.

Since C∞0 (Ω) is dense into H1
0 (Ω) and both terms in the previous equation are continuos with

respect to v ∈ H1
0 (Ω) then the equation holds for all v ∈ H1

0 (Ω).
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Definition

A function y ∈ H1
0 (Ω) is called a weak solution for problem (3) if it satisfies the following

variational formulation:∫
Ω

∇y · ∇v dx =

∫
Ω

f v dx, ∀v ∈ H1
0 (Ω).

Theorem (Minty-Browder)

Let V be a reflexive Banach space, ` ∈ V ′ and A : V → V ′ be an operator satisfying

i) A is monotone, i.e., for all u, v ∈ V , 〈A(u)− A(v),u − v〉V ′,V ≥ 0.
ii) A is hemicontinuous, i.e., the function t → 〈A(u + tv),w〉V ′,V is continuous on the

interval [0,1], for all u, v,w ∈ V .

iii) A is coercive, i.e., lim‖u‖V→∞
〈A(u),u〉V′,V
‖u‖V

= +∞.
Then there exists a solution to the variational equation

〈A(y), v〉V ′,V = 〈`, v〉V ′,V , for all v ∈ V .

If A is strictly monotone, then the solution is unique.
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Problem statement

Consider the following general PDE-constrained optimization problem:
min J(y,u),

subject to:

e(y,u) = 0,
(P)

where J : Y ×U −→ R and e : Y ×U −→ W , and Y , U and W are reflexive Banach spaces.

We assume that there exists a unique solution y(u) to e(y,u) = 0 and refer to the operator

G : U −→ Y
u 7−→ y(u) = G(u),

which assigns to each u ∈ U the solution y(u) to

e(y(u),u) = 0 (4)

as control-to-state operator.
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Reduced problem

Using the control-to-state operator we can write the optimal control problem in reduced form

as

min
u∈U

f (u) := J(y(u),u). (R)

Hereafter we assume that f : U −→ R is bounded from below.

Definition

An element ū ∈ U is called a global solution to (R) if f (ū) ≤ f (u), ∀u ∈ U . Further, ū is

called a local solution if there exists a neighborhood V (ū) of ū in U such that

f (ū) ≤ f (u), ∀u ∈ U ∩ V (ū).
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A functional h : U −→ R is called weakly lower semicontinuous (w.l.s.c) if for every weakly

convergent sequence un ⇀ u in U it follows that

h(u) ≤ lim inf
n→∞

h(un).

Theorem

If f : U −→ R is w.l.s.c and

lim
‖u‖U→∞

f (u) = +∞ (5)

then f has a global minimum.

Proof

Let {un}n∈N be a minimizing sequence, i.e. {un} ⊂ U and limn→∞ f (un) = infu∈U f (u).
Thanks to (5) it follows that the sequence {un} is bounded. Since U is reflexive, there exists a

subsequence {unk}k∈N which converges weakly to a limit ū as k →∞. Due to the weakly

lower semi continuity of f it follows that

f (ū) ≤ lim inf
k→∞

f (unk ) = inf
u∈U

f (u).

Consequently, ū is a global minimum.
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Example

min J(y,u) =
1
2
‖y− zd‖2L2(Ω) +

α

2
‖u‖2L2(Ω), (6a)

subject to:

−∆y = u in Ω, (6b)

y = 0 on Γ, (6c)

where Ω ⊂ RN is a bounded Lipschitz domain, α > 0, zd ∈ L2(Ω).

Control space: U = L2(Ω) and, there exists for each u ∈ U a unique weak solution for (6b) --

(6c). The reduced functional f : U −→ R satisfies

f (u) = J(y(u),u) ≥ α

2
‖u‖2L2

and, consequently, is bounded from below and satisfies (5). Moreover f is convex and

continuous, and, therefore, w.l.s.c. Consequently, there exists an optimal solution for (6).
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Differentiability in Banach spaces

Let U , V be two real Banach spaces and F : U −→ V a mapping from U to V .

Directional derivative

If for given elements u ∈ U , h ∈ U the limit

F ′(u; h) := lim
t→0

1
t

(F(u + th)− F(u))

exists, then F ′(u; h) is called the directional derivative of F at u in direction h. If this limit exists

for all h ∈ U , then F is called directionally differentiable at u.

Gâteaux derivative

If for some u ∈ U and all h ∈ U the limit

F ′(u; h) = lim
t→0

1
t

(F(u + th)− F(u))

exists and if F ′(u; h) is a continuous linear mapping from U to V with respect to h, then F ′(u)
and is called the Gâteaux derivative of F at u, and F is called Gâteaux differentiable at u.
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Example 1

Let U = C[0,1] and f : U −→ R given through

f (u(·)) = sin(u(1)).

Let also h = h(x) be a function from C[0,1]. The directional derivative of f at u in direction h
is then given by

lim
t→0

1
t

(f (u + th)− f (u)) = lim
t→0

1
t

(sin(u(1) + th(1))− sin(u(1)))

=
d

dt
sin(u(1) + th(1))

∣∣
t=0

= cos(u(1) + th(1))h(1)
∣∣
t=0

= cos(u(1))h(1).

Therefore, f ′(u; h) = cos(u(1))h(1) and since f ′(u) is linear and continuous with respect to

h, f is Gâteaux differentiable with its derivative given by

f ′(u)h = cos(u(1))h(1).
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Example 2

Let H be a Hilbert space with scalar product (·, ·)H and norm ‖·‖H . Let f : H −→ R be

defined by

f (u) = ‖u‖2H .

The directional derivative of f at h in derivation h is given by

lim
t→0

1
t

(f (u + th)− f (u)) = lim
t→0

1
t

(‖u + th‖2H − ‖u‖
2
H)

= lim
t→0

1
t

(2t(u,h)H + t2
∥∥h2

H

∥∥
= 2(u,h)H .

Therefore f ′(u; h) = 2(u,h)H , which is linear and continuous whit respect to h.

Consequently, f is Gâteaux differentiable with

f ′(u)h = 2u,

(upon identification of H and H ′).
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Fréchet derivative

If F is Gâteaux differentiable at u ∈ U and satisfies in addition that

lim
‖u‖H→0

‖F(u + h)− F(u)− F ′(u)h‖V

‖h‖H

= 0,

then F ′(h) is called the Fréchet derivative if F at u and F is called Fréchet differentiable at u.

1 If F is Fréchet differentiable at some u ∈ U , then it is continuous at u.

2 Chain Rule: Let F : U −→ V and G : V −→ Z be Fréchet differentiable at u and F(u),

respectively. Then

E(u) = G(F(u))

is also Fréchet differentiable and its derivative is given by

E′(u) = G′(F(u)) ◦ F ′(u).

3 If F : U −→ V is Fréchet differentiable and F ′ : U −→ L(U ,V ) is also F-differentiable,

then F is called twice F-differentiable and we write

F ′′(u) ∈ L(U ,L(U ,V ))

for the second derivative of F at u.
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Optimality condition

Let S ⊂ U be a nonempty subset of a real normed space U and f : S ⊂ U −→ R a given

functional, bounded from below. Consider the following problem:

min
u∈S

f (u). (7)

Definition

For u ∈ S the direction v − u ∈ U is called admissible if there exists a sequence {εn}n∈N with

0 < εn → 0 as n →∞ and u + εn(v − u) ∈ S for every n ∈ N.

Theorem

Suppose that ū ∈ S is a local solution of (7) and that v − ū is an admissible direction. If f is

directionally differentiable at ū in direction v − ū, then

f ′(ū, v − ū) ≥ 0.

Corollary

Let S = U and ū a local optimal solution for 7. If f is Gâteaux differentiable at ū, then

f ′(ū)h = 0, for all h ∈ U .
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Standing assumptions

Let us now turn to PDE constrained optimization problems and recall problem (P):
min J(y,u),

subject to:

e(y,u) = 0,

or, in reduced form (R),

min
u∈U

f (u) := J(y(u),u).

We assume that J : Y × U −→ R and e : Y × U −→ W are continuously Fréchet

differentiable. We further assume that the partial derivative of e with respect to y at

(ȳ, ū) = (y(ū), ū) satisfies the following condition:

ey (ȳ, ū) is invertible. (8)
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Definition

An element p ∈ W ′ is called the adjoint state related to ū if it solves the following adjoint
equation:

ey (y(ū), ū)
∗ p = Jy (y(ū), ū) , (9)

where ey (y(ū), ū)
∗

denotes the adjoint operator of ey (y(ū), ū).

Theorem (Optimality System)

Let ū be a local optimal solution for (R) and y(ū) its associated state. If (8) holds, then there

exists an adjoint state p ∈ W ′ such that the following system of equations is satisfied.

e (y(ū), ū) = 0 (10a)

ey (y(ū), ū)
∗ p = Jy (y(ū), ū) (10b)

eu (y(ū), ū)
∗ p = Ju (y(ū), ū) (10c)
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Proof

By taking the derivative, with respect to u in direction h, on both sides of the state equation

e (y(u),u) = 0, we obtain that

ey (y(u),u) y′(u) + eu (y(u),u) h = 0. (11)

If ū ∈ U is a local optimal solution for (R) we obtain the following necessary condition

f ′(ū)h = 〈Jy(ȳ(ū), ū), y′(ū)h〉Y ′,Y + Ju (y(ū, ū)) h = 0, ∀h ∈ U . (12)

Using the adjoint equation,

f ′(ū)h = 〈ey(ȳ(ū)∗p, y′(ū)h〉Y ′,Y + Ju (y(ū, ū)) h

= 〈p, ey(ȳ(ū)y′(ū)h〉W ′,W + Ju (y(ū, ū)) h

and using the linearized equation (11)

f ′(ū)h = 〈p,−eu(ȳ(ū)h〉W ′,W + Ju (y(ū, ū)) h

= −〈eu(ȳ(ū)p,h〉U ′,U + Ju (y(ū, ū)) h = 0

Consequently,

eu(ȳ(ū)p = Ju(y(ū, ū).
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Example

Consider the heating problem given by
min J(y,u) = 1

2 ‖y− zd‖2L2(Ω) + α
2 ‖u‖

2
L2(Ω) ,

subject to:

−∆y = u in Ω,
y = 0 on Γ.

The variational formulation of the state equation is given by∫
Ω

∇y · ∇v dx =

∫
Ω

u · v dx, ∀v ∈ H1
0 (Ω).
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Consequently, e : H1
0 (Ω)× L2(Ω) −→ H−1(Ω) = (H1

0 (Ω))′ is defined by

〈e(y,u), v〉H−1,H1
0

=

∫
Ω

∇y · ∇v dx −
∫

Ω

uv dx

and its partial derivative with respect to y is given by

〈ey(y,u)w, v〉 =

∫
Ω

∇w · ∇v dx.

For a given function ϕ ∈ H−1(Ω), equation

〈ey(y,u)w, v〉H−1,H1
0

=

∫
Ω

∇w · ∇v dx = 〈ϕ, v〉H−1,H1
0

has a unique solution and ‖w‖H1
0
≤ C ‖ϕ‖H−1 for some constant C > 0 (Lax-Milgram

Theorem). Consequently, (8) is satisfied.

48 / 81



In order to apply the Theorem we compute the remaining derivatives:

eu(y,u)h = h,

Jy(y,u)w = y− zd,

Ju(y,u) = αu.

The optimality system is then given through:∫
Ω

∇y · ∇vdx =

∫
Ω

uv dx, ∀v ∈ H1
0 (Ω),∫

Ω

∇p · ∇vdx =

∫
Ω

(y− zd)vdx, ∀v ∈ H1
0 (Ω),

αu + p = 0, a.e. in Ω,

where we used that〈
ey(y(ū))w, v

〉
=

∫
Ω

∇w · ∇v dx =

∫
Ω

∇v · ∇w dx =
〈
w, ey(ȳ, ū)∗v

〉
H1

0 ,H
−1

and, similarly,

(eu(ȳ, ū)h, φ)L2(Ω) =

∫
Ω

hφ dx = (h, eu(ȳ, ū)∗φ) .
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Lagrangian derivation

Consider again problem (P) with J : Y × U −→ R and e : Y × U −→ W . The Lagrangian

functional is given by

L : Y × U ×W ′ −→ R
(y,u, p) 7−→ L(y,u, p) = J(y,u)− 〈p, e(y,u)〉W ′,W .

By differentiating L(y,u, p) with respect to y in direction w we obtain that

Ly(y,u, p) = Jy(y,u)w − 〈p, ey(y,u)w〉W ′,W
= Jy(y,u)w − 〈ey(y,u)∗p,w〉Y ′,Y .

Consequently, equation (10b) can also be expressed as

Ly(ȳ, ū, p) = 0.

50 / 81



In a similar manner, by taking the derivative of L(y,u, p) with respect to u, in direction h, we

obtain

Ly(y,u, p)h = Ju(y,u)h − 〈p, eu(y,u)h〉W ′,W
= Ju(y,u)h − 〈eu(y,u)∗p,h〉U ′,U

and, therefore equation (10c) can be written as

Lu(ȳ, ū, p) = 0.

Summarizing, the optimality system (10) can be written in the following way:

e (y(ū), ū) = 0, (13a)

Ly (ȳ, ū, p) = 0, (13b)

Lu (ȳ, ū, p) = 0. (13c)
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Semilinear example

Rigorous derivation


min J(y,u) =

1
2
‖y− zd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) ,

subject to:

−∆y + y3 = u in Ω,
y = 0 on Γ.

Weak formulation of the PDE. Multiplying the state equation by a test function

v ∈ C∞0 (Ω) and integrating yields∫
Ω

−∆y vdx +

∫
Ω

y3vdx =

∫
Ω

uv dx.
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Using integration by parts,∫
Ω

∇y · ∇v dx +

∫
Ω

y3v dx =

∫
Ω

uv dx.

Since C∞0 is dense in H1
0 (Ω) and all terms are continuous with respect to v in the H1

0 (Ω) norm,

we obtain the following variational formulation: Find y ∈ H1
0 (Ω) such that∫

Ω

∇y · ∇v dx +

∫
Ω

y3v dx =

∫
Ω

uv dx, ∀v ∈ H1
0 (Ω).

Consequently, e : H1
0 (Ω)× L2(Ω) −→ H−1(Ω) is defined by

〈e(y,u), v〉H−1,H1
0

=

∫
Ω

∇y · ∇v dx +

∫
Ω

y3v dx −
∫

Ω

uv dx,

for all v ∈ H1
0 (Ω). By monotone operator theory, there exists a unique solution.
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Derivatives. The partial derivatives of e(y,u) are given by

〈ey(y,u)w, v〉H−1,H1
0

=

∫
Ω

∇w · ∇v dx + 3
∫

Ω

y2wv dx,

〈eu(y,u)h, v〉H−1,H1
0

= −
∫

Ω

hv dx.

Differentiability. Since y ∈ H1
0 (Ω) ↪→ L6(Ω), we consider the operator

N : L6(Ω) −→ L2(Ω)
y 7−→ y3.

The derivative of N is given by

N ′(y)w = 3y2w.

Indeed, ∥∥(y + w)3 − y3 − 3y2w
∥∥

L2 =
∥∥3yw2 + w3

∥∥
L2

≤ 3 ‖y‖L6 ‖w‖2L6 + ‖w‖3L6 = O
(
‖w‖2L6

)
= o (‖w‖L6) .
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Lagrangian. The Lagrangian is defined by:

L(y,u, p) =
1
2
‖y− zd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

−
∫

Ω

∇y · ∇p dx +

∫
Ω

y3p dx +

∫
Ω

up dx

Taking the partial derivative with respect to the state:

Ly(y,u, p)w = (y− zd,w)−
∫

Ω

∇w · ∇p dx − 3
∫

Ω

y2wp dx

=

∫
Ω

(y− zd)w dx −
∫

Ω

∇p · ∇w dx − 3
∫

Ω

y2pw dx = 0

⇒
∫

Ω

∇p · ∇w dx + 3
∫

Ω

y2pw dx =

∫
Ω

(y− zd)w dx

On the other hand, taking the partial derivative with respect to u we get that:

Lu(y,u, p)h = α(u,h)L2(Ω) +

∫
Ω

hp dx = 0

⇒ αu + p = 0 a.e. in Ω.
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Optimality system.∫
Ω

∇y · ∇v dx +

∫
Ω

y3v dx =

∫
Ω

uv dx, ∀v ∈ H1
0 (Ω),

∫
Ω

∇p · ∇w dx + 3
∫

Ω

y2pw dx =

∫
Ω

(y− zd)w dx, ∀w ∈ H1
0 (Ω),

αu + p = 0 a.e. in Ω.

or, in strong form, 
−∆y + y3 = u in Ω,

y = 0 on Γ,
−∆p + 3y2p = y− zd in Ω,

p = 0 on Γ,
αu + p = 0 a.e. in Ω.
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Elliptic control problem

Optimal control problem

min J(y,u) =
1
2

∫
Ω

|y− zd|2dx +
α

2

∫
Ω

|u|2dx

subject to:

−∆y = u

(distributed control)

y|Γ = g

Lagrangian:

L(y,u, p, ψ) = J(y,u)−
∫

Ω

p(−∆y− u)−
∫

Γ

ξ(y− g)
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Necessary condition I

Ly(w) =

∫
Ω

(y− zd)w −
∫

Ω

p(−∆w)−
∫

Γ

ξw

=

∫
Ω

(y− zd)w −
∫

Ω

∇p · ∇w +

∫
Γ

p
∂w

∂n
−
∫

Γ

ξw

=

∫
Ω

(y− zd + ∆p)w −
∫

Γ

(
∂p

∂n
+ ξ)w +

∫
Γ

p
∂w

∂n
= 0

⇒ −∆p = y− zd (14)

∂p

∂n
+ ξ = 0 on Γ (15)

p|Γ = 0. (16)

Lu(v) = α

∫
Ω

u v +

∫
Ω

p v =

∫
Ω

(αu + p) v = 0.

⇒ αu + p = 0. (17)
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Optimality system:

{
−∆y = u

y|Γ = g
(state equation){

−∆p = y− zd

p|Γ = 0
(adjoint equation)

αu + p = 0 (optimality condition)
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Parabolic control problem

Problem 

min J(y,u) = 1
2

T∫
0

∫
Ω

|y− zd|2 + α
2

T∫
0

∫
Ω

|u|2

subject to:

∂y
∂t −∆y = f

y|Γ = u

y(0) = y0,

where y is the state and u the control.

Lagrangian:

L(y,u, p, ξ, θ) = J(y,u)−
T∫

0

∫
Ω

p(
∂y

∂t
−∆y− f ) +

T∫
0

∫
Γ

ξ(y− u) +

∫
Ω

θ(y(0)− y0)
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Adjoint equation I

Ly(w) =

∫ T

0

∫
Ω

(y− zd) ·w −
∫ T

0

∫
Ω

p · ∂w

∂t
+

∫ T

0

∫
Ω

p · (∆w) +

∫ T

0

∫
Γ

ξ ·w +

∫
Ω

θ ·w(0)

=

∫ T

0

∫
Ω

(y− zd) ·w −
∫

Ω

[
p(T) ·w(T)− p(0) ·w(0)−

∫ T

0

∂p

∂t
·w
]

−
∫ T

0

∫
Ω

∇p · ∇w +

∫ T

0

∫
Γ

p · ∂w

∂n
+

∫ T

0

∫
Γ

ξ ·w +

∫
Ω

θ ·w(0)

=

∫ T

0

∫
Ω

(
y− zd +

∂p

∂t
+ ∆p

)
·w −

∫ T

0

∫
Γ

(
∂p

∂n
− ξ
)
·w

+

∫ T

0

∫
Γ

p · ∂w

∂n
−
∫
Ω

p(T) ·w(T) +

∫
Ω

(p(0) + θ) ·w(0).
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Adjoint equation II

⇒ −∂p

∂t
−∆p = y− zd (18)

∂p

∂n
= ξ en Γ (19)

p|Γ = 0 (20)

p(T) = 0 (21)

p(0) + θ = 0 (22)
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Lu(v) = α

∫ T

0

∫
Γ

u v −
∫ T

0

∫
Γ

ξ v =

∫
Ω

(αu − ξ) v = 0.

⇒ αu − ξ = 0 on Γ. (23)
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Optimality system:


∂ty−∆y = f

y|Γ = u

y(0) = y0

(state equation)


−∂tp −∆p = y− zd

p|Γ = 0
p(T) = 0

(adjoint equation)

αu − ∂p

∂n
= 0 (optimality condition)
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Theorem

Let U be a Banach space and S ⊂ U a convex set. Let f : U −→ R be twice continuously

F-differentiable in a neighborhood of ū ∈ U . If ū satisfies the necessary condition

f ′(u)(u − ū) ≥ 0, ∀u ∈ S, (24)

and there exists some δ > 0 such that

f ′′(u)[u − ū] ≥ δ ‖u‖2U , ∀u ∈ U , (25)

then there exist contstants ε > 0 and σ > 0 such that

f (u) ≥ f (ū) + σ ‖u − ū‖2U

for all u ∈ S : ‖u − ū‖U ≤ ε. Therefore, ū is a local minimun of f on S.

65 / 81



Since f is twice Fréchet differentiable, a Taylor expansion can be used. Consequently, for

some θ ∈ [0,1]

f (u) = f (ū) + f ′(ū)(u − ū) +
1
2

f ′′(ū + θ(u − ū))[u − ū]2

≥ f (ū) +
1
2

f ′′(ū + θ(u − ū))[u − ū]2 by (24)

= f (ū) +
1
2

f ′′(ū)[u − ū]2 +
1
2

[f ′′(ū + θ(u − ū))− f ′′(ū)] [u − ū]2.

Since f is twice continuously Fréchet differentiable, there exists some ε > 0 such that

‖u − ū‖ ≤ ε⇒
∣∣[f ′′(ū + θ(u − ū))− f ′′(u)] [u − ū]2

∣∣ ≤ δ

2
‖u − ū‖2U .

Consequently,

f (u) ≥ f (ū) +
1
2

f ′′(ū)[u − ū]2 − δ

4
‖u − ū‖2U

≥ f (ū) +
δ

4
‖u − ū‖2U , by (25).

The result follows by choosing σ = δ
4 .
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Theorem

Let J : Y × U −→ R and e : Y × U −→ W be twice continuously F-differentible. Let (ȳ, ū, p)
be a solution to the optimality system (10). If there exists some constant δ > 0 such that

L′′(y,u)[(w,h)]2 ≥ δ ‖h‖2U , (SSC)

for all (w,h) ∈ Y × U that satisfy the equation

ey(ȳ, ū)w + eu(ȳ, ū)h = 0,

then there exist constants ε > 0 and σ > 0 such that

J(y,u) ≥ J(ȳ, ū) + σ ‖u − ū‖2U

for all u ∈ U : ‖u − ū‖U ≤ ε.
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Equivalence of (SSC)

The (SSC) condition can be equivalently expressed as,

(w,h)

(
Jyy(ȳ, ū) Jyu(ȳ, ū)
Juy(ȳ, ū) Juu(ȳ, ū)

)(
w

h

)
−

〈
p, (w,h)

(
eyy(ȳ, ū) eyu(ȳ, ū)
euy(ȳ, ū) euu(ȳ, ū)

)(
w

h

)〉
W ′,W

≥ δ ‖h‖2U

for all (w,h) ∈ Y × U that satisfy the equation

ey(ȳ, ū)w + eu(ȳ, ū)h = 0,
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Example

Consider again the optimal control problem
min J(y,u) =

1
2
‖y− zd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) ,

subject to:∫
Ω

∇y · ∇u dx +

∫
Ω

y3v dx =

∫
Ω

uv dx, ∀v ∈ H1
0 (Ω).

Recall that the first derivatives are given by

〈ey(y,u)w, v〉H−1,H1
0

=

∫
Ω

∇w · ∇v dx + 3
∫

Ω

y2wv,

〈ey(y,u)h, v〉H−1,H1
0

= −
∫

Ω

hv dx

and the second derivatives are given by〈
eyy(y,u)[w]2, v

〉
H−1,H1

0
= 6

∫
Ω

yw2v dx,

eyu(y,u) = 0, euy(y,u) = 0, euu(y,u) = 0.
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For the quadratic cost functional we get:

Jyy(ȳ, ū)[w]2 = ‖w‖2L2(Ω) , Jyu(y,u) = 0,
Juy(y,u) = 0, Juu(y,u)[h]2 = α ‖h‖2L2(Ω).

Condition (SSC) is therefore equivalent to

‖w‖L2(Ω) + α ‖h‖L2(Ω) − 6
∫

Ω

yw2p dx ≥ δ ‖h‖2L2(Ω) .

This holds in particular if ∫
Ω

(1− 6yp)w2 dx ≥ 0.
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Sequential quadratic programming

Semilinear example

Starting point is the optimality system, which in absence of control constraints is given by

0 = F(y, p,u) =



−∆y + y3 − u

y|Γ
−∆p + 3y2 λ− y + zd

p|Γ
αu + p

Using a Newton iteration for the coupled system F(y, p,u) = 0 yields

−∆δy + 3y2δy − δu = ∆y− y3 + u

δy|Γ = 0
−∆δp + 3y2δp + 6pδy − δy = ∆p − 3y2 p + y− zd

δp|Γ = 0
αδu + δp = −αu − p

and, hence, the Newton update yn+1 = yn + δy, pn+1 = pn + δp, un+1 = un + δu .
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General formulation

In general, an optimality system is given by:{
L′(y,u)(ȳ, ū, p) = 0,

−e(ȳ, ū) = 0.

By applying Newton’s method, we obtain the following linearized system:(
L′′(y,u)(yk ,uk , pk) −e′(yk ,uk)∗

−e′(yk ,uk) 0

) (
δy

δu

)
δp

 =

 ey(yk ,uk)∗pk − Jy(yk ,uk)
eu(yk ,uk)∗pk − Ju(yk ,uk)

e(yk ,uk)


yk+1 = yk + δy, uk+1 = uk + δu , pk+1 = pk + δp.

The latter corresponds to the necessary and sufficient optimality condition of the following

linear-quadratic problem:
min

(δy,δu)

1
2
L′′(y,u)(yk ,uk , pk)[(δy, δu)]2 + L′(y,u)(yk ,uk , pk)(δy, δu),

subject to:

ey(yk ,uk)δy + eu(yk ,uk)δu + e(yk ,uk) = 0.
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SQP properties

If (yk ,uk) ∈ V (ȳ, ū), where (ȳ, ū) is an optimal solution to the PDE constrained

optimization problem such that e′(ȳ, ū) is surjective and

L′′(y,u)(ȳ, ū, p)[(w,h)]2 ≥ κ ‖h‖2U ,

for some κ > 0, and the second derivatives of J and e are Lipschitz continuous, then

there exists δp ∈ W ′ such that the update system is well-posed.

Since the SQP corresponds to the Newton method applied to the optimality system, it is

also known as Lagrange-Newton approach. Local quadratic convergence of this

approach can be proved similarly as for Newton’s method.

Control constraints may be included within this framework as well. In that case each

linear quadratic subproblem also contains control constraints for the increments.

A mesh independence principle can also be proved in this case if the discretization

satisfies some technical assumptions.
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also known as Lagrange-Newton approach. Local quadratic convergence of this

approach can be proved similarly as for Newton’s method.

Control constraints may be included within this framework as well. In that case each

linear quadratic subproblem also contains control constraints for the increments.

A mesh independence principle can also be proved in this case if the discretization

satisfies some technical assumptions.
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Nonsmooth optimality system

Unilateral control constraint

A nonsmooth approach for the solution of the optimality system consists in considering it as an

operator equation

0 = F(y, p,u) =



−∆y + y3 − u

y|Γ
−∆p + 3y2 p − y + zd

p|Γ = 0
αū + p + λb = 0
λb −max(0, λb + c(u − b))

Due to the max function, F is not Fréchet differentiable.

Is it possible to define a weaker differentiability notion for such a function such that a Newton

type iterative scheme can be stated?

74 / 81



Nonsmooth optimality system

Unilateral control constraint

A nonsmooth approach for the solution of the optimality system consists in considering it as an

operator equation

0 = F(y, p,u) =



−∆y + y3 − u

y|Γ
−∆p + 3y2 p − y + zd

p|Γ = 0
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Semismoothness

Definition

Let D be an open subset of a Banach space X . The mapping F : D ⊂ X → Z is called

Newton differentiable (semismooth) on the open subset V ⊂ D if there exists a generalized

derivative G : V → L(X , Z) such that

lim
h→0

1
‖h‖X

‖F(x + h)− F(x)− G(x + h)h‖Z = 0, (26)

for every x ∈ V .
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Example

Consider the absolute value function

f = | · | : R −→ R
x 7−→ |x|.

The function is not differentiable at 0. However, by using the generalized derivative

g(x) =

{
−1 if x < 0,
1 if x ≥ 0.

we obtain for the case x = 0 :

1 if h > 0 :
∣∣|x + h| − |x| − |h|

∣∣ = 0,

2 if h < 0 :
∣∣|x + h| − |x|+ |h|

∣∣ = | − x − h − x + h| = 0.
Consequently,

lim
h→0

1
|h|
|f (x + h)− f (x)− g(x + h)h| = 0

and | · | is Newton differentiable.
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Semismooth Newton method

Theorem

Let x̄ be a solution to F(x) = 0, with F Newton differentiable (semismooth) in an open

neighborhood V containing x̄ . If ∥∥G(x)−1
∥∥
L(Z ,X)

≤ C, (27)

for some constant C > 0 and all x ∈ V , then the Newton iteration

xk+1 = xk − G(xk)−1F(xk) (28)

converges superlinearly to x̄ provided that ‖x0 − x̄‖X is sufficiently small. If F is strongly

semismooth the convergence rate is quadratic.
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Proof

Considering that F(x̄) = 0 and the iterates given by (28) it follows that

‖xk+1 − x̄‖X =
∥∥xk − G(xk)−1F(xk)− x̄

∥∥
X

=
∥∥G(xk)−1(F(x̄)− F(xk)− G(xk)(x̄ − xk))

∥∥
X

≤ C ‖F(xk)− F(x̄)− G(xk)(xk − x̄)‖Z . (29)

Thanks to the Newton differentiability if then follows, for ρ = 1
2C , that there exists a ball Bδ(x̄)

such that if xk ∈ Bδ(x̄), then

‖xk+1 − x̄‖X ≤ Cρ ‖xk − x̄‖X =
1
2
‖xk − x̄‖X .

Consequently, if ‖x0 − x̄‖X < δ then xk ∈ Bδ(x̄), ∀k ≥ 1, and

lim
k→∞

‖xk − x̄‖X = 0.

Moreover, from (29) and the Newton differentiability, we get that

lim
k→∞

‖xk+1 − x̄‖X

‖xk − x̄‖X

≤ lim
k→∞

C
‖F(xk)− F(x̄)− G(xk)(xk − x̄)‖Z

‖xk − x̄‖X

= 0.
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SSN update

In the case of our semilinear optimality system, the semismooth Newton update looks as follows:

−∆δy + 3y2δy − δu = ∆y− y3 + u

δy|Γ = 0

−∆δp + 3y2 δp + 6y p δy − δy = ∆p − 3y2 p + y− zd

δp|Γ = 0
αδu + δp + δλb = −αu − p − λb

δλ − χA(δλ + αδu) = −λb + max(0, λb + α(u − b))

where χA stand for the indicator function of the active set A := {x : λb + α(u − b) ≥ 0}.

Semismooth Newton update

yn+1 = yn + δy, pn+1 = pn + δp, un+1 = un + δu , λn+1 = λn + δλ.
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Further topics

Theory

Problems with pointwise state or pointwise mixed control-state constraints

Problems constrained by partical differential inclusions (variational inequalities)

Problems involving sparsity inducing terms in the cost functional

Numerics

Discretization methods and error estimates for the numerical approximation of

PDE-constrained optimization problems and/or optimality systems

Efficient solution of sparse PDE-constrained optimization problems

Reduced space methods for solving PDE-constrained optimization problems Lecture by

Todd Munson
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