Theory and Practice of PDE-Constrained Optimization

Juan Carlos De Los Reyes

Mode

Mat

Centro de Modelización Matemática Escuela Politécnica Nacional Quito, Ecuador

Summer School ICCOPT 2019
Berlin, August 2019

Outline

- Problem statement and existence of solutions
- Optimality systems
- I agrangian formalism
- Second order sufficient optimality condition
4 Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?
(1) Motivation
- Optimal heating
- Optimal flow control
- Numerical weather prediction

2. Finite dimensional setting

- An example in finite dimensions
- Optimality systems

3. Theory of PDF Constrained Optimization

- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
4 Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Optimal heating

Let Ω be a bounded domain in \mathbb{R}^{3} with boundary Γ which represents a body that has to be heated. We may act along the boundary by setting a temperature $u=u(x)$.

The goal of the problem consists in getting as close as possible to a given desired temperature $z_{d}(x)$ in Ω.

$$
\min J(y, u):=\frac{1}{2} \int_{\Omega}\left(y(x)-z_{d}(x)\right)^{2} d x+\frac{\alpha}{2} \int_{\Gamma} u(x)^{2} d s
$$

subject to:

$$
\left.\begin{array}{rrr}
-\Delta y=0 & \text { in } \Omega, \\
\frac{\partial y}{\partial n}=\lambda(u-y) & \text { in } \Gamma,
\end{array}\right\} \begin{gathered}
\text { State equation. } \\
u_{a}(x) \leq u(x) \leq u_{b}(x) .
\end{gathered} \quad \text { Control constraints. }
$$

The scalar $\alpha>0$ can be interpreted as a control cost, which also lead to more regular solutions of the optimization problem. The function λ represents the heat transfer along the boundary.
(Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2 Finite dimensional setting

- An example in finite dimensions
- Optimality systems

3 Theory of PDE Constrained Optimization

- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
4 Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Forward facing step channel

- Uncontrolled Navier-Stokes flow $R e=1000$.

Forward facing step channel

- Uncontrolled Navier-Stokes flow $\operatorname{Re}=1000$.

- Goal: reduce recirculatons, delay transition to turbulence

$$
\min J(y, u)=\frac{1}{2} \int_{\Omega}\left|y-z_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Gamma_{1}}|u|^{2} d s
$$

subject to

$$
\begin{equation*}
-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f \tag{P}
\end{equation*}
$$

$$
\operatorname{div} y=0
$$

$$
\left.y\right|_{\Gamma_{1}}=u
$$

$$
\left.y\right|_{\Gamma \backslash \Gamma_{1}}=g
$$

$$
\min J(y, u)=\frac{1}{2} \int_{\Omega}\left|y-z_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Gamma_{1}}|u|^{2} d s
$$

subject to

$$
\begin{equation*}
-\nu \Delta y+(y \cdot \nabla) y+\nabla p=f \tag{P}
\end{equation*}
$$

$$
\operatorname{div} y=0
$$

$$
\left.y\right|_{\Gamma_{1}}=u \quad \text { (boundary control) }
$$

$$
\left.y\right|_{\Gamma \backslash \Gamma_{1}}=g
$$

Controlled flow

Wing configuration

Adapted mesh

Problem

$$
\min J(y, u)=\int_{\Gamma_{b}}\left(\nu \partial_{\vec{n}} y-p \vec{n}\right) \vec{e}_{l} d s
$$

sujeto a:

$$
\begin{equation*}
\partial_{t} y-\nu \Delta y+(y \cdot \nabla) y+\nabla p=0 \tag{P}
\end{equation*}
$$

$$
\begin{aligned}
& \left.y\right|_{\Gamma_{1}}=u=a \sin \left(2 \pi f\left(t-t_{0}\right)\right)\binom{\cos (\beta-\delta)}{\sin (\beta-\delta)} \\
& \left.y\right|_{\Gamma \backslash \Gamma_{1}}=g
\end{aligned}
$$

$$
\operatorname{div} y=0
$$

where Γ_{b} is the boundary of the wing, a denotes the amplitude, f the frequence, β is the suction angle and δ is the angle of the valve.

Problem

$$
\min J(y, u)=\int_{\Gamma_{b}}\left(\nu \partial_{\vec{n}} y-p \vec{n}\right) \vec{e}_{l} d s
$$

sujeto a:
$\partial_{t} y-\nu \Delta y+(y \cdot \nabla) y+\nabla p=0$
div $y=0$

$$
\begin{align*}
& \left.y\right|_{\Gamma_{1}}=u=a \sin \left(2 \pi f\left(t-t_{0}\right)\right)\binom{\cos (\beta-\delta)}{\sin (\beta-\delta)} \tag{P}\\
& \left.y\right|_{\Gamma \backslash \Gamma_{1}}=g
\end{align*}
$$

where Γ_{b} is the boundary of the wing, a denotes the amplitude, f the frequence, β is the suction angle and δ is the angle of the valve.

Results

(a) Base flow

(b) Perturbed flow

1 Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2) Finite dimensional setting

- An example in finite dimensions
- Optimality systems
(3) Theory of PDE Constrained Optimization
- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
4 Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Numerical weather prediction

Problem

The constitutive model is in general known, but not the initial condition.

Primitive equations

Very basic model
$\frac{\partial u}{\partial t}=-u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}-w \frac{\partial u}{\partial z}+\frac{u v \tan (\phi)}{a}-\frac{u w}{a}-\frac{1}{\rho} \frac{\partial p}{\partial x}-2 \Omega(w \cos (\phi)-v \sin (\phi))+F r_{x}$
$\frac{\partial v}{\partial t}=-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y}-w \frac{\partial v}{\partial z}+\frac{u^{2} \tan (\phi)}{a}-\frac{u w}{a}-\frac{1}{\rho} \frac{\partial p}{\partial y}-2 \Omega u \sin (\phi)+F r_{y}$
$\frac{\partial w}{\partial t}=-u \frac{\partial w}{\partial x}-v \frac{\partial w}{\partial y}-w \frac{\partial w}{\partial z}+\frac{u^{2}+v^{2}}{a}-\frac{1}{\rho} \frac{\partial p}{\partial z}+2 \Omega u \cos (\phi)-g+F r_{z}$
$\frac{\partial T}{\partial t}=-u \frac{\partial T}{\partial x}-v \frac{\partial T}{\partial y}+\left(\gamma-\gamma_{d}\right) w+\frac{1}{c_{p}} \frac{d H}{d t}$
$\frac{\partial \rho}{\partial t}=-u \frac{\partial \rho}{\partial x}-v \frac{\partial \rho}{\partial y}-w \frac{\partial \rho}{\partial z}-\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)$
$\frac{\partial q}{\partial t}=-u \frac{\partial q}{\partial x}-v \frac{\partial q}{\partial y}-w \frac{\partial q}{\partial z}+Q_{v}$

+ Boundary conditions
+ Initial conditions

Primitive equations

Very basic model
$\frac{\partial u}{\partial t}=-u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}-w \frac{\partial u}{\partial z}+\frac{u v \tan (\phi)}{a}-\frac{u w}{a}-\frac{1}{\rho} \frac{\partial p}{\partial x}-2 \Omega(w \cos (\phi)-v \sin (\phi))+F r_{x}$
$\frac{\partial v}{\partial t}=-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y}-w \frac{\partial v}{\partial z}+\frac{u^{2} \tan (\phi)}{a}-\frac{u w}{a}-\frac{1}{\rho} \frac{\partial p}{\partial y}-2 \Omega u \sin (\phi)+F r_{y}$
$\frac{\partial w}{\partial t}=-u \frac{\partial w}{\partial x}-v \frac{\partial w}{\partial y}-w \frac{\partial w}{\partial z}+\frac{u^{2}+v^{2}}{a}-\frac{1}{\rho} \frac{\partial p}{\partial z}+2 \Omega u \cos (\phi)-g+F r_{z}$
$\frac{\partial T}{\partial t}=-u \frac{\partial T}{\partial x}-v \frac{\partial T}{\partial y}+\left(\gamma-\gamma_{d}\right) w+\frac{1}{c_{p}} \frac{d H}{d t}$
$\frac{\partial \rho}{\partial t}=-u \frac{\partial \rho}{\partial x}-v \frac{\partial \rho}{\partial y}-w \frac{\partial \rho}{\partial z}-\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)$
$\frac{\partial q}{\partial t}=-u \frac{\partial q}{\partial x}-v \frac{\partial q}{\partial y}-w \frac{\partial q}{\partial z}+\Theta_{v}$

+ Boundary conditions
+ Initial conditions

Data assimilation

Goal

Data assimilation methods aim at finding a good initial condition of the athmospheric system in order to get better weather forecasts

Data assimilation

Goal

Data assimilation methods aim at finding a good initial condition of the athmospheric system in order to get better weather forecasts

- Information can be obtained mainly from ground stations, radionsonds or satellite images;

Data assimilation

Goal

Data assimilation methods aim at finding a good initial condition of the athmospheric system in order to get better weather forecasts

- Information can be obtained mainly from ground stations, radionsonds or satellite images;
- Reconstruction results depend strongly on the number of observations.

DA approaches

- Optimal interpolation
- 3D-Var
- Ensemble Kalman filter
- Hybrid methods

Data assimilation

4D-Var

$$
\begin{aligned}
\min J(y, u)= & \frac{1}{2} \sum_{i=1}^{n}\left[H\left(y\left(t_{i}\right)\right)-z_{d}\left(t_{i}\right)\right]^{T} R_{i}^{-1}\left[H\left(y\left(t_{i}\right)\right)-z_{d}\left(t_{i}\right)\right] \\
& +\frac{1}{2}\left[u-y^{b}\left(t_{0}\right)\right]^{T} B^{-1}\left[u-y^{b}\left(t_{0}\right)\right]
\end{aligned}
$$

subject to

$$
\begin{array}{ll}
y\left(t_{j}\right)=M_{j}\left(y\left(t_{0}\right)\right), & \text { (system of PDEs) } \\
y\left(t_{0}\right)=u, & \text { (initial condition) }
\end{array}
$$

where z_{d} are the observations, y^{b} is the background vector, and R_{i} and B are the observation and background error covariances, respectively.

Operational use of 3D-Var

(Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2 Finite dimensional setting

- An example in finite dimensions
- Optimality systems

3 Theory of PDE Constrained Optimization

- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
(4) Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

An example in finite dimensions

Linear quadratic optimization problem

$$
\left\{\begin{array}{l}
\min J(y, u)=\frac{1}{2}\left\|y-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2} \\
\text { subject to: } \tag{QP}\\
A y=u \\
u \in U_{\mathrm{ad}}
\end{array}\right.
$$

where $y, u \in \mathbb{R}^{n}$ correspond to the state and control variables, $\alpha>0, U_{\mathrm{ad}}$ is a closed convex set and $A \in \mathcal{M}_{n \times n}$ is invertible.
$\|\cdot\|$ and (\cdot, \cdot) stand for the euclidean norm and scalar product, respectively.

An example in finite dimensions

Linear quadratic optimization problem

$$
\left\{\begin{array}{l}
\min J(y, u)=\frac{1}{2}\left\|y-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2} \tag{QP}\\
\text { subject to: } \\
A y=u \\
u \in U_{\mathrm{ad}}
\end{array}\right.
$$

where $y, u \in \mathbb{R}^{n}$ correspond to the state and control variables, $\alpha>0, U_{\text {ad }}$ is a closed convex set and $A \in \mathcal{M}_{n \times n}$ is invertible.
$\|\cdot\|$ and (\cdot, \cdot) stand for the euclidean norm and scalar product, respectively.
By introducing $S=A^{-1}$ we obtain that $y=S u$ and we may rewrite the cost function in the following reduced form:

$$
J(y, u)=J(S u, u)=: f(u)
$$

As a consequence we obtain the following reduced optimization problem:

$$
\begin{equation*}
\min _{u \in U_{\mathrm{ad}}} f(u) \tag{rQP}
\end{equation*}
$$

Existence of optimal solution

Definition

A vector $\bar{u} \in U_{\text {ad }}$ is called (local) optimal solution to (rQP) if

$$
f(\bar{u}) \leq f(u), \quad \forall u \in U_{\text {ad }} \quad\left(\forall u \in U_{\mathrm{ad}} \cap B_{r}(\bar{u})\right) .
$$

Its correspondent state $\bar{y}=S \bar{u}$ is called optimal state and the matrix $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ solution or control-to-state operator.

Existence of optimal solution

Definition

A vector $\bar{u} \in U_{\text {ad }}$ is called (local) optimal solution to (rQP) if

$$
f(\bar{u}) \leq f(u), \quad \forall u \in U_{\text {ad }} \quad\left(\forall u \in U_{\mathrm{ad}} \cap B_{r}(\bar{u})\right) .
$$

Its correspondent state $\bar{y}=S \bar{u}$ is called optimal state and the matrix $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ solution or control-to-state operator.

Theorem

Let $U_{\text {ad }}$ be a non empty, closed and bounded set, and A an invertible matrix. Then there exists at least an optimal control for (rQP)

[^0]First order optimality condition

Theorem

Let \bar{u} be a local optimal solution for (rQP). Then it satisfies the variational inequality:

$$
f^{\prime}(\bar{u})(v-\bar{u}) \geq 0, \quad \text { for all } v \in U_{\mathrm{ad}}
$$

Proof

f is differentiable, $U_{\text {ad }}$ is convex and \bar{u} is a local optimal solution, i.e., $f(\bar{u}) \leq f(w)$, $\forall w \in U_{\mathrm{ad}} \cap B_{r}(\bar{u})$. Taking $w=\bar{u}+t(v-\bar{u})$, with $0<t \leq 1$ and $v-\bar{u}$ admissible,

$$
0 \leq f(\bar{u}+t(v-\bar{u}))-f(\bar{u}) .
$$

Dividing by t and taking the limit:

$$
0 \leq \frac{f(\bar{u}+t(v-\bar{u}))-f(\bar{u})}{t} \xrightarrow{t \rightarrow 0} f^{\prime}(\bar{u})(v-\bar{u}) .
$$

First order optimality condition

Theorem

Let \bar{u} be a local optimal solution for (rQP). Then it satisfies the variational inequality:

$$
f^{\prime}(\bar{u})(v-\bar{u}) \geq 0, \quad \text { for all } v \in U_{\mathrm{ad}}
$$

Proof

f is differentiable, $U_{\text {ad }}$ is convex and \bar{u} is a local optimal solution, i.e., $f(\bar{u}) \leq f(w)$, $\forall w \in U_{\mathrm{ad}} \cap B_{r}(\bar{u})$. Taking $w=\bar{u}+t(v-\bar{u})$, with $0<t \leq 1$ and $v-\bar{u}$ admissible,

$$
0 \leq f(\bar{u}+t(v-\bar{u}))-f(\bar{u})
$$

Dividing by t and taking the limit:

$$
0 \leq \frac{f(\bar{u}+t(v-\bar{u}))-f(\bar{u})}{t} \xrightarrow{t \rightarrow 0} f^{\prime}(\bar{u})(v-\bar{u}) .
$$

- Thanks to the strong convexity of the reduced cost function and the convexity of U_{ad}, the first order optimality condition is both necessary and sufficient.
(Motivation
- Optimal heating
- Optimal flow control
- Numerical weather prediction

2) Finite dimensional setting

- An example in finite dimensions
- Optimality systems
(3) Theory of PDE Constrained Optimization
- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
(4) Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

First technique

Replace $y=A^{-1} u$ and consider

$$
\min f(u)=\frac{1}{2}\left\|A^{-1} u-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}
$$

First technique

Replace $y=A^{-1} u$ and consider

$$
\min f(u)=\frac{1}{2}\left\|A^{-1} u-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}
$$

Necessary condition:

$$
(\nabla f(\bar{u}), v-\bar{u})=\left(A^{-1} \bar{u}-z_{d}, A^{-1}(v-\bar{u})\right)+\alpha(\bar{u}, v-\bar{u})
$$

First technique

Replace $y=A^{-1} u$ and consider

$$
\min f(u)=\frac{1}{2}\left\|A^{-1} u-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}
$$

Necessary condition:

$$
\begin{aligned}
(\nabla f(\bar{u}), v-\bar{u}) & =\left(A^{-1} \bar{u}-z_{d}, A^{-1}(v-\bar{u})\right)+\alpha(\bar{u}, v-\bar{u}) \\
& =(\underbrace{A^{-T}\left(\bar{y}-z_{d}\right)}_{=p}, v-\bar{u})+\alpha(\bar{u}, v-\bar{u}) \geq 0, \forall v \in U_{a d}
\end{aligned}
$$

First technique

Replace $y=A^{-1} u$ and consider

$$
\min f(u)=\frac{1}{2}\left\|A^{-1} u-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}
$$

Necessary condition:

$$
\begin{aligned}
(\nabla f(\bar{u}), v-\bar{u}) & =\left(A^{-1} \bar{u}-z_{d}, A^{-1}(v-\bar{u})\right)+\alpha(\bar{u}, v-\bar{u}) \\
& =(\underbrace{A^{-T}\left(\bar{y}-z_{d}\right)}_{=p}, v-\bar{u})+\alpha(\bar{u}, v-\bar{u}) \geq 0, \forall v \in U_{a d}
\end{aligned}
$$

or, equivalently,

$$
\begin{aligned}
& A^{T} p=\bar{y}-z_{d} \quad \text { (adjoint equation) } \\
& (\alpha \bar{u}+p, v-\bar{u}) \geq 0, \forall v \in U_{a d} \quad \text { (optimality condition) }
\end{aligned}
$$

Second technique

Lagrangian:

$$
\mathcal{L}(y, u, p)=\frac{1}{2}\left\|y-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}-(p, A y-u)
$$

Second technique

Lagrangian:

$$
\mathcal{L}(y, u, p)=\frac{1}{2}\left\|y-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}-(p, A y-u)
$$

Necessary condition:

- $\mathcal{L}_{y}(w)=\left(y-z_{d}, w\right)-(p, A w)=\left(-A^{T} p+y-z_{d}, w\right)=0$

Second technique

Lagrangian:

$$
\mathcal{L}(y, u, p)=\frac{1}{2}\left\|y-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}-(p, A y-u)
$$

Necessary condition:

- $\mathcal{L}_{y}(w)=\left(y-z_{d}, w\right)-(p, A w)=\left(-A^{T} p+y-z_{d}, w\right)=0$

$$
\Rightarrow A^{T} p=y-z_{d} \quad \text { (adjoint equation) }
$$

Second technique

Lagrangian:

$$
\mathcal{L}(y, u, p)=\frac{1}{2}\left\|y-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}-(p, A y-u)
$$

Necessary condition:

- $\mathcal{L}_{y}(w)=\left(y-z_{d}, w\right)-(p, A w)=\left(-A^{T} p+y-z_{d}, w\right)=0$

$$
\Rightarrow A^{T} p=y-z_{d} \quad \text { (adjoint equation) }
$$

- $\mathcal{L}_{u}(v-u)=(\alpha u, v-u)+(p, v-u) \geq 0, \forall v \in U_{a d}$

Second technique

Lagrangian:

$$
\mathcal{L}(y, u, p)=\frac{1}{2}\left\|y-z_{d}\right\|^{2}+\frac{\alpha}{2}\|u\|^{2}-(p, A y-u) .
$$

Necessary condition:

- $\mathcal{L}_{y}(w)=\left(y-z_{d}, w\right)-(p, A w)=\left(-A^{T} p+y-z_{d}, w\right)=0$

$$
\Rightarrow A^{T} p=y-z_{d} \quad \text { (adjoint equation) }
$$

- $\mathcal{L}_{u}(v-u)=(\alpha u, v-u)+(p, v-u) \geq 0, \forall v \in U_{a d}$

$$
\Rightarrow(\alpha u+p, v-u) \geq 0, \forall v \in U_{a d} \quad \text { (optimality condition) }
$$

Let u be a local optimal solution to problem (QP). Then it satisfies:

$$
\begin{array}{ll}
A y=u & \text { (state equation) } \\
A^{T} p=y-z_{d} & \text { (adjoint equation) } \\
(\alpha u+p, v-u) \geq 0, \forall v \in U_{a d} & \text { (optimality condition) }
\end{array}
$$

- The optimality condition can also be expressed by means of the projection operator on a convex set:

$$
u=P_{U_{a d}}(u-c(p+\alpha u)), \quad \forall c>0
$$

- One frequent choice for U_{ad} is given by the so-called box constraints

$$
U_{\mathrm{ad}}=\left\{u \in \mathbb{R}^{n}: u_{a} \leq u \leq u_{b}\right\}
$$

where $u_{a}, u_{b} \in \mathbb{R}^{n}$ satisfy $u_{a} \leq u_{b}$ componentwise.

Karush-Kuhn-Tucker

Theorem

Let (\bar{y}, \bar{u}) be an optimal pair and $U_{\mathrm{ad}}=\left\{u \in \mathbb{R}^{n}: u_{a} \leq u \leq u_{b}\right\}$. Then there exist multipliers $p \in \mathbb{R}^{n}$ and $\lambda_{a}, \lambda_{b} \in \mathbb{R}^{n}$ such that:

$$
\left\{\begin{array}{l}
A \bar{y}=\bar{u} \\
A^{T} p=\bar{y}-z_{d} \\
\alpha \bar{u}+p-\lambda_{a}+\lambda_{b}=0 \\
\lambda_{a} \geq 0, \quad \lambda_{b} \geq 0 \\
\lambda_{a}^{\top}\left(u_{a}-\bar{u}\right)=\lambda_{b}^{\top}\left(\bar{u}-u_{b}\right)=0 \\
u_{a} \leq \bar{u} \leq u_{b}
\end{array}\right.
$$

Proof

From the optimality condition we obtain that

$$
(p+\alpha \bar{u}, \bar{u}) \leq(p+\alpha \bar{u}, u), \forall u \in U_{\mathrm{ad}},
$$

which implies that \bar{u} is solution of

$$
\min _{u \in U_{\mathrm{ad}}}(p+\alpha \bar{u}, u)=\min _{u \in U_{\mathrm{ad}}} \sum_{i=1}^{n}(p+\alpha \bar{u})_{i} u_{i} .
$$

Thanks to the special structure of U_{ad} and the independence of the u_{i} 's, it then follows that

$$
(p+\alpha \bar{u})_{i} \cdot \bar{u}_{i}=\min _{u_{a, i} \leq u_{i} \leq u_{b, i}}(p+\alpha \bar{u})_{i} \cdot u_{i}
$$

for $i=1, \ldots, l$. Consequently,

$$
\bar{u}_{i}=\left\{\begin{array}{lll}
u_{b, i} & \text { if } & (p+\alpha \bar{u})_{i}<0 \tag{1}\\
u_{a, i} & \text { if } & (p+\alpha \bar{u})_{i}>0
\end{array}\right.
$$

Otherwise $(p+\alpha \bar{u})_{i}=0$.

Let us now define the multipliers:

$$
\begin{align*}
& \lambda_{a}:=\max (\overrightarrow{0}, p+\alpha \bar{u}), \\
& \lambda_{b}:=|\min (\overrightarrow{0}, p+\alpha \bar{u})|, \tag{2}
\end{align*}
$$

where max, min and $|\cdot|$ are considered componentwise. Then, it follows that

$$
\begin{array}{ll}
\lambda_{a} \geq 0, & u_{a}-\bar{u} \leq 0, \\
\lambda_{b} \geq 0, & \left(\lambda_{a}, u_{a}-\bar{u}\right)=0 \\
\bar{u}-u_{b} \leq 0, & \left(\lambda_{b}, \bar{u}-u_{b}\right)=0
\end{array}
$$

which is called a complementary system. From (2) we then obtain that

$$
\lambda_{a}-\lambda_{b}=p+\alpha \bar{u}
$$

Complementarity function

The last three relations of the optimality system, namely,

$$
\begin{aligned}
& \lambda_{a} \geq 0, \quad \lambda_{b} \geq 0 \\
& \lambda_{a}^{\top}\left(u_{a}-\bar{u}\right)=\lambda_{b}^{\top}\left(\bar{u}-u_{b}\right)=0 \\
& u_{a} \leq \bar{u} \leq u_{b}
\end{aligned}
$$

can be rewritten as

$$
\begin{array}{ll}
\lambda_{a}=-\min \left(0, \lambda_{a}+c(u-a)\right), & \forall c>0 \\
\lambda_{b}=\max \left(0, \lambda_{b}+c(u-b)\right), & \forall c>0
\end{array}
$$

and the optimality system to be solved

$$
\begin{aligned}
& A \bar{y}=\bar{u} \\
& A^{T} p=\bar{y}-z_{d} \\
& \alpha \bar{u}+p-\lambda_{a}+\lambda_{b}=0 \\
& \lambda_{a}=-\min \left(0, \lambda_{a}+c(u-a)\right) \\
& \lambda_{b}=\max \left(0, \lambda_{b}+c(u-b)\right)
\end{aligned}
$$

(Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2 Finite dimensional setting

- An example in finite dimensions
- Optimality systems
(3) Theory of PDE Constrained Optimization - Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
4 Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Integration by parts

Let $\Omega \in \mathbb{R}^{N}$ be a bounded Lipschitz domain with boundary Γ. By applying Green's formula, with $y, v \in C^{1}(\bar{\Omega})$, we obtain that

$$
\int_{\Omega} v(x) D_{i} y(x) d x=\int_{\Gamma} v(x) y(x) n_{i}(x) d s-\int_{\Omega} y(x) D_{i} v(x) d x
$$

where $n_{i}(x)$ denotes the i-th component of the exterior normal vector to Ω at the point $x \in \Gamma$ and $d s$ the Lebesgue surface measure at the boundary Γ.

If in addition $v=0$ on Γ then

$$
\int_{\Omega} y(x) D_{i} v(x) d x=-\int_{\Omega} v(x) D_{i} y(x) d x
$$

More generally, we obtain the following formula

$$
\int_{\Omega} y(x) D^{\alpha} v(x) d x=(-1)^{|\alpha|} \int_{\Omega} v(x) D^{\alpha} y(x) d x, \quad \text { with }|\alpha| \leq k
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ is a multi-index and D^{α} the corresponding diferentiation operator.

Weak derivatives

Let $L_{\text {loc }}^{1}(\Omega)$ denote the set of locally integrable functions on Ω, i.e., integrable on any compact subset of Ω.

Definition

Let $y \in L_{\text {loc }}^{1}(\Omega)$ and α a given multi-index. If there exists a function $w \in L_{\text {loc }}^{1}(\Omega)$ such that

$$
\int_{\Omega} y(x) D^{\alpha} v(x) d x=(-1)^{|\alpha|} \int_{\Omega} w(x) v(x) d x
$$

for all $v \in C_{0}^{\infty}(\Omega)$, then w is called the derivative of order k of y in the weak sense or weak derivative, and is denoted by $w=D^{\alpha} y$.

Example

$y(x)=|x|$ in $\Omega=(-1,1)$. The weak derivative of $y(x)$ is given by

$$
y^{\prime}(x)=w(x)= \begin{cases}-1 & \text { if } x \in(-1,0) \\ 1 & \text { if } x \in[0,1)\end{cases}
$$

Indeed, for $v \in C_{0}^{\infty}(-1,1)$,

$$
\begin{aligned}
\int_{-1}^{1}|x| v^{\prime}(x) d x & =\int_{-1}^{0}(-x) v^{\prime}(x) d x+\int_{0}^{1} x v^{\prime}(x) d x \\
& =-\left.x \cdot v(x)\right|_{-1} ^{0}-\int_{-1}^{0}(-1) v(x)+\left.x \cdot v(x)\right|_{0} ^{1}-\int_{0}^{1} 1 v(x) d x \\
& =-\int_{-1}^{1} w(x) v(x) d x
\end{aligned}
$$

Note that the value of y^{\prime} at the point $x=0$ is not important since the set $\{x=0\}$ has zero measure.

Sobolev spaces

Definition

Let $1 \leq p<\infty$ and $k \in \mathbb{N}$. The space of functions $y \in L^{p}(\Omega)$ whose weak derivatives $D^{\alpha} y$, $\forall \alpha:|\alpha| \leq k$ exist and belong to $L^{p}(\Omega)$ is denoted by $W^{k, p}(\Omega)$ and is called Sobolev space. This space is endowed with the norm

$$
\|y\|_{W^{k, p}(\Omega)}=\left(\sum_{|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} y\right|^{p} d x\right)^{1 / p}
$$

If $p=\infty$ the space $W^{k, p}(\Omega)$ is defined in a similar way and endowed with the norm

$$
\|y\|_{W^{k, p}(\Omega)}=\max _{|\alpha| \leq k}\left\|D^{\alpha} y\right\|_{L^{\infty}(\Omega)}
$$

The spaces $W^{k, p}(\Omega)$ constitute Banach spaces.

In the special case $p=2$ the Sobolev spaces are denoted by

$$
H^{k}(\Omega):=W^{k, 2}(\Omega)
$$

A frequently used space is

$$
H^{1}(\Omega)=\left\{y \in L^{2}(\Omega): D_{i} y \in L^{2}(\Omega), i=1, \ldots, N\right\}
$$

endowed with the norm

$$
\|y\|_{H^{1}(\Omega)}=\left(\int_{\Omega}\left(y^{2}+|\nabla y|^{2}\right) d x\right)^{1 / 2}
$$

with $|\nabla y|^{2}=\left(D_{1} y\right)^{2}+\cdots+\left(D_{N} y\right)^{2}$, and the scalar product

$$
(u, v)_{H^{1}(\Omega)}=\int_{\Omega} u \cdot v d x+\int_{\Omega} \nabla u \cdot \nabla v d x
$$

The space $H^{1}(\Omega)$ constitutes a Hilbert space with the provided scalar product.

Definition

The closure of $C_{0}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$ is denoted by $W_{0}^{k, p}(\Omega)$. The resulting space is endowed with the $W^{k, p}$ norm and constitutes a closed subspace of $W^{k, p}(\Omega)$.

Theorem

Let $\Omega \in \mathbb{R}^{N}$ be a bounded Lipschitz domain. There exist a bounded linear mapping $\tau: W^{1, p}(\Omega) \rightarrow L^{p}(\Gamma)$ such that

$$
(\tau y)(x)=y(x) \quad \text { a.e. on } \Gamma,
$$

for each $y \in C(\bar{\Omega})$.

Definition

The function τy is called the trace of y on Γ and τ is called the trace operator.

Consider the following problem:

$$
\left\{\begin{align*}
-\Delta y=f & \text { in } \Omega \tag{3}\\
y=0 & \text { on } \Gamma
\end{align*}\right.
$$

Assuming y is a classical solution, multiplying (3) with a test function $v \in C_{0}^{\infty}(\Omega)$ and integrating over Ω we obtain

$$
-\int_{\Omega} v \Delta y d x=\int_{\Omega} f v d x
$$

which using integration by parts yields

$$
-\int_{\Omega} v \partial_{\vec{n}} y d s+\int_{\Omega} \nabla y \cdot \nabla v d x=\int_{\Omega} f v d x
$$

where $\partial_{\vec{n}} y=\nabla y \cdot \vec{n}$. Since $v=0$ on Γ, it follows that

$$
\int_{\Omega} \nabla y \cdot \nabla v d x=\int_{\Omega} f v d x
$$

Since $C_{0}^{\infty}(\Omega)$ is dense into $H_{0}^{1}(\Omega)$ and both terms in the previous equation are continuos with respect to $v \in H_{0}^{1}(\Omega)$ then the equation holds for all $v \in H_{0}^{1}(\Omega)$.

Definition

A function $y \in H_{0}^{1}(\Omega)$ is called a weak solution for problem (3) if it satisfies the following variational formulation:

$$
\int_{\Omega} \nabla y \cdot \nabla v d x=\int_{\Omega} f v d x, \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Definition

A function $y \in H_{0}^{1}(\Omega)$ is called a weak solution for problem (3) if it satisfies the following variational formulation:

$$
\int_{\Omega} \nabla y \cdot \nabla v d x=\int_{\Omega} f v d x, \quad \forall v \in H_{0}^{1}(\Omega)
$$

Theorem (Minty-Browder)

Let V be a reflexive Banach space, $\ell \in V^{\prime}$ and $A: V \rightarrow V^{\prime}$ be an operator satisfying
i) A is monotone, i.e., for all $u, v \in V,\langle A(u)-A(v), u-v\rangle_{V^{\prime}, V} \geq 0$.
ii) A is hemicontinuous, i.e., the function $t \rightarrow\langle A(u+t v), w\rangle_{V^{\prime}, V}$ is continuous on the interval $[0,1]$, for all $u, v, w \in V$.
iii) A is coercive, i.e., $\lim _{\|u\|_{V} \rightarrow \infty} \frac{\langle A(u), u\rangle_{V^{\prime}, V}}{\|u\|_{V}}=+\infty$.

Then there exists a solution to the variational equation

$$
\langle A(y), v\rangle_{V^{\prime}, V}=\langle\ell, v\rangle_{V^{\prime}, V}, \quad \text { for all } v \in V
$$

If A is strictly monotone, then the solution is unique.
(1) Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2 Finite dimensional setting

- An example in finite dimensions
- Optimality systems
(3) Theory of PDE Constrained Optimization
- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition

4. Numerical solution of optimality systems

- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Problem statement

Consider the following general PDE-constrained optimization problem:

$$
\left\{\begin{array}{l}
\min J(y, u) \tag{P}\\
\text { subject to: } \\
e(y, u)=0
\end{array}\right.
$$

where $J: Y \times U \longrightarrow \mathbb{R}$ and $e: Y \times U \longrightarrow W$, and Y, U and W are reflexive Banach spaces. We assume that there exists a unique solution $y(u)$ to $e(y, u)=0$ and refer to the operator

$$
\begin{aligned}
G: U & \longrightarrow Y \\
u & \longmapsto y(u)=G(u)
\end{aligned}
$$

which assigns to each $u \in U$ the solution $y(u)$ to

$$
\begin{equation*}
e(y(u), u)=0 \tag{4}
\end{equation*}
$$

as control-to-state operator.

Reduced problem

Using the control-to-state operator we can write the optimal control problem in reduced form as

$$
\min _{u \in U} f(u):=J(y(u), u)
$$

Hereafter we assume that $f: U \longrightarrow \mathbb{R}$ is bounded from below.

Definition

An element $\bar{u} \in U$ is called a global solution to (\mathcal{R}) if $f(\bar{u}) \leq f(u), \forall u \in U$. Further, \bar{u} is called a local solution if there exists a neighborhood $V(\bar{u})$ of \bar{u} in U such that

$$
f(\bar{u}) \leq f(u), \quad \forall u \in U \cap V(\bar{u})
$$

A functional $h: U \longrightarrow \mathbb{R}$ is called weakly lower semicontinuous (w.l.s.c) if for every weakly convergent sequence $u_{n} \rightharpoonup u$ in U it follows that

$$
h(u) \leq \liminf _{n \rightarrow \infty} h\left(u_{n}\right) .
$$

Theorem

If $f: U \longrightarrow \mathbb{R}$ is w.I.s.c and

$$
\begin{equation*}
\lim _{\|u\|_{U} \rightarrow \infty} f(u)=+\infty \tag{5}
\end{equation*}
$$

then f has a global minimum.

Proof

Let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be a minimizing sequence, i.e. $\left\{u_{n}\right\} \subset U$ and $\lim _{n \rightarrow \infty} f\left(u_{n}\right)=\inf _{u \in U} f(u)$. Thanks to (5) it follows that the sequence $\left\{u_{n}\right\}$ is bounded. Since U is reflexive, there exists a subsequence $\left\{u_{n_{k}}\right\}_{k \in \mathbb{N}}$ which converges weakly to a limit \bar{u} as $k \rightarrow \infty$. Due to the weakly lower semi continuity of f it follows that

$$
f(\bar{u}) \leq \liminf _{k \rightarrow \infty} f\left(u_{n_{k}}\right)=\inf _{u \in U} f(u)
$$

Consequently, \bar{u} is a global minimum.

Example

$$
\begin{equation*}
\min J(y, u)=\frac{1}{2}\left\|y-z_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2}, \tag{6a}
\end{equation*}
$$

subject to:

$$
\begin{array}{rc}
-\Delta y=u & \text { in } \Omega \\
y=0 & \text { on } \Gamma \tag{6c}
\end{array}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded Lipschitz domain, $\alpha>0, z_{d} \in L^{2}(\Omega)$.
Control space: $U=L^{2}(\Omega)$ and, there exists for each $u \in U$ a unique weak solution for (6b) -(6c). The reduced functional $f: U \longrightarrow \mathbb{R}$ satisfies

$$
f(u)=J(y(u), u) \geq \frac{\alpha}{2}\|u\|_{L^{2}}^{2}
$$

and, consequently, is bounded from below and satisfies (5). Moreover f is convex and continuous, and, therefore, w.l.s.c. Consequently, there exists an optimal solution for (6).

Differentiability in Banach spaces

Let U, V be two real Banach spaces and $F: U \longrightarrow V$ a mapping from U to V.

Directional derivative

If for given elements $u \in U, h \in U$ the limit

$$
F^{\prime}(u ; h):=\lim _{t \rightarrow 0} \frac{1}{t}(F(u+t h)-F(u))
$$

exists, then $F^{\prime}(u ; h)$ is called the directional derivative of F at u in direction h. If this limit exists for all $h \in U$, then F is called directionally differentiable at u.

Differentiability in Banach spaces

Let U, V be two real Banach spaces and $F: U \longrightarrow V$ a mapping from U to V.

Directional derivative

If for given elements $u \in U, h \in U$ the limit

$$
F^{\prime}(u ; h):=\lim _{t \rightarrow 0} \frac{1}{t}(F(u+t h)-F(u))
$$

exists, then $F^{\prime}(u ; h)$ is called the directional derivative of F at u in direction h. If this limit exists for all $h \in U$, then F is called directionally differentiable at u.

Gâteaux derivative

If for some $u \in U$ and all $h \in U$ the limit

$$
F^{\prime}(u ; h)=\lim _{t \rightarrow 0} \frac{1}{t}(F(u+t h)-F(u))
$$

exists and if $F^{\prime}(u ; h)$ is a continuous linear mapping from U to V with respect to h, then $F^{\prime}(u)$ and is called the Gâteaux derivative of F at u, and F is called Gâteaux differentiable at u.

Example 1

Let $U=C[0,1]$ and $f: U \longrightarrow \mathbb{R}$ given through

$$
f(u(\cdot))=\sin (u(1)) .
$$

Let also $h=h(x)$ be a function from $C[0,1]$. The directional derivative of f at u in direction h is then given by

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{1}{t}(f(u+t h)-f(u)) & =\lim _{t \rightarrow 0} \frac{1}{t}(\sin (u(1)+t h(1))-\sin (u(1))) \\
& =\left.\frac{d}{d t} \sin (u(1)+t h(1))\right|_{t=0} \\
& =\left.\cos (u(1)+\operatorname{th}(1)) h(1)\right|_{t=0} \\
& =\cos (u(1)) h(1)
\end{aligned}
$$

Therefore, $f^{\prime}(u ; h)=\cos (u(1)) h(1)$ and since $f^{\prime}(u)$ is linear and continuous with respect to h, f is Gâteaux differentiable with its derivative given by

$$
f^{\prime}(u) h=\cos (u(1)) h(1)
$$

Example 2

Let H be a Hilbert space with scalar product $(\cdot, \cdot)_{H}$ and norm $\|\cdot\|_{H}$. Let $f: H \longrightarrow \mathbb{R}$ be defined by

$$
f(u)=\|u\|_{H}^{2}
$$

The directional derivative of f at h in derivation h is given by

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{1}{t}(f(u+t h)-f(u)) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(\|u+t h\|_{H}^{2}-\|u\|_{H}^{2}\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(2 t(u, h)_{H}+t^{2}\left\|h_{H}^{2}\right\|\right. \\
& =2(u, h)_{H}
\end{aligned}
$$

Therefore $f^{\prime}(u ; h)=2(u, h)_{H}$, which is linear and continuous whit respect to h. Consequently, f is Gâteaux differentiable with

$$
f^{\prime}(u) h=2 u
$$

(upon identification of H and H^{\prime}).

Fréchet derivative

If F is Gâteaux differentiable at $u \in U$ and satisfies in addition that

$$
\lim _{\|u\|_{H} \rightarrow 0} \frac{\left\|F(u+h)-F(u)-F^{\prime}(u) h\right\|_{V}}{\|h\|_{H}}=0
$$

then $F^{\prime}(h)$ is called the Fréchet derivative if F at u and F is called Fréchet differentiable at u.

Fréchet derivative

If F is Gâteaux differentiable at $u \in U$ and satisfies in addition that

$$
\lim _{\|u\|_{H} \rightarrow 0} \frac{\left\|F(u+h)-F(u)-F^{\prime}(u) h\right\|_{V}}{\|h\|_{H}}=0
$$

then $F^{\prime}(h)$ is called the Fréchet derivative if F at u and F is called Fréchet differentiable at u.
(1) If F is Fréchet differentiable at some $u \in U$, then it is continuous at u.
(2) Chain Rule: Let $F: U \longrightarrow V$ and $G: V \longrightarrow Z$ be Fréchet differentiable at u and $F(u)$, respectively. Then

$$
E(u)=G(F(u))
$$

is also Fréchet differentiable and its derivative is given by

$$
E^{\prime}(u)=G^{\prime}(F(u)) \circ F^{\prime}(u)
$$

(3) If $F: U \longrightarrow V$ is Fréchet differentiable and $F^{\prime}: U \longrightarrow \mathcal{L}(U, V)$ is also F-differentiable, then F is called twice F -differentiable and we write

$$
F^{\prime \prime}(u) \in \mathcal{L}(U, \mathcal{L}(U, V))
$$

for the second derivative of F at u.

Optimality condition

Let $S \subset U$ be a nonempty subset of a real normed space U and $f: S \subset U \longrightarrow \mathbb{R}$ a given functional, bounded from below. Consider the following problem:

$$
\begin{equation*}
\min _{u \in S} f(u) . \tag{7}
\end{equation*}
$$

Definition

For $u \in S$ the direction $v-u \in U$ is called admissible if there exists a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ with $0<\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $u+\varepsilon_{n}(v-u) \in S$ for every $n \in \mathbb{N}$.

Theorem

Suppose that $\bar{u} \in S$ is a local solution of (7) and that $v-\bar{u}$ is an admissible direction. If f is directionally differentiable at \bar{u} in direction $v-\bar{u}$, then

$$
f^{\prime}(\bar{u}, v-\bar{u}) \geq 0 .
$$

Corollary

Let $S=U$ and \bar{u} a local optimal solution for 7 . If f is Gâteaux differentiable at \bar{u}, then

$$
f^{\prime}(\bar{u}) h=0, \quad \text { for all } h \in U .
$$

(Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2 Finite dimensional setting

- An example in finite dimensions
- Optimality systems
(3) Theory of PDE Constrained Optimization
- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition

4. Numerical solution of optimality systems

- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Standing assumptions

Let us now turn to PDE constrained optimization problems and recall problem (\mathcal{P}):

$$
\left\{\begin{array}{l}
\min J(y, u) \\
\text { subject to: } \\
e(y, u)=0
\end{array}\right.
$$

or, in reduced form (\mathcal{R}),

$$
\min _{u \in U} f(u):=J(y(u), u)
$$

We assume that $J: Y \times U \longrightarrow \mathbb{R}$ and $e: Y \times U \longrightarrow W$ are continuously Fréchet differentiable. We further assume that the partial derivative of e with respect to y at $(\bar{y}, \bar{u})=(y(\bar{u}), \bar{u})$ satisfies the following condition:

$$
\begin{equation*}
e_{y}(\bar{y}, \bar{u}) \text { is invertible. } \tag{8}
\end{equation*}
$$

Definition

An element $p \in W^{\prime}$ is called the adjoint state related to \bar{u} if it solves the following adjoint equation:

$$
\begin{equation*}
e_{y}(y(\bar{u}), \bar{u})^{*} p=J_{y}(y(\bar{u}), \bar{u}) \tag{9}
\end{equation*}
$$

where $e_{y}(y(\bar{u}), \bar{u})^{*}$ denotes the adjoint operator of $e_{y}(y(\bar{u}), \bar{u})$.

Theorem (Optimality System)

Let \bar{u} be a local optimal solution for (\mathcal{R}) and $y(\bar{u})$ its associated state. If (8) holds, then there exists an adjoint state $p \in W^{\prime}$ such that the following system of equations is satisfied.

$$
\begin{align*}
e(y(\bar{u}), \bar{u}) & =0 \tag{10a}\\
e_{y}(y(\bar{u}), \bar{u})^{*} p & =J_{y}(y(\bar{u}), \bar{u}) \tag{10b}\\
e_{u}(y(\bar{u}), \bar{u})^{*} p & =J_{u}(y(\bar{u}), \bar{u}) \tag{10c}
\end{align*}
$$

Proof

By taking the derivative, with respect to u in direction h, on both sides of the state equation $e(y(u), u)=0$, we obtain that

$$
\begin{equation*}
e_{y}(y(u), u) y^{\prime}(u)+e_{u}(y(u), u) h=0 . \tag{11}
\end{equation*}
$$

If $\bar{u} \in U$ is a local optimal solution for (\mathcal{R}) we obtain the following necessary condition

$$
\begin{equation*}
f^{\prime}(\bar{u}) h=\left\langle J_{y}(\bar{y}(\bar{u}), \bar{u}), y^{\prime}(\bar{u}) h\right\rangle_{Y^{\prime}, Y}+J_{u}(y(\bar{u}, \bar{u})) h=0, \quad \forall h \in U . \tag{12}
\end{equation*}
$$

Using the adjoint equation,

$$
\begin{aligned}
f^{\prime}(\bar{u}) h & =\left\langle e_{y}\left(\bar{y}(\bar{u})^{*} p, y^{\prime}(\bar{u}) h\right\rangle_{Y^{\prime}, Y}+J_{u}(y(\bar{u}, \bar{u})) h\right. \\
& =\left\langle p, e_{y}\left(\bar{y}(\bar{u}) y^{\prime}(\bar{u}) h\right\rangle_{W^{\prime}, W}+J_{u}(y(\bar{u}, \bar{u})) h\right.
\end{aligned}
$$

and using the linearized equation (11)

$$
\begin{aligned}
f^{\prime}(\bar{u}) h & =\left\langle p,-e_{u}(\bar{y}(\bar{u}) h\rangle_{W^{\prime}, W}+J_{u}(y(\bar{u}, \bar{u})) h\right. \\
& =-\left\langle e_{u}(\bar{y}(\bar{u}) p, h\rangle_{U^{\prime}, U}+J_{u}(y(\bar{u}, \bar{u})) h=0\right.
\end{aligned}
$$

Consequently,

$$
e_{u}\left(\bar{y}(\bar{u}) p=J_{u}(y(\bar{u}, \bar{u}) .\right.
$$

Example

Consider the heating problem given by

$$
\left\{\begin{array}{l}
\min J(y, u)=\frac{1}{2}\left\|y-z_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2} \\
\text { subject to: } \\
-\Delta y=u \quad \text { in } \Omega \\
y=0 \quad \text { on } \Gamma .
\end{array}\right.
$$

The variational formulation of the state equation is given by

$$
\int_{\Omega} \nabla y \cdot \nabla v d x=\int_{\Omega} u \cdot v d x, \quad \forall v \in H_{0}^{1}(\Omega)
$$

Consequently, $e: H_{0}^{1}(\Omega) \times L^{2}(\Omega) \longrightarrow H^{-1}(\Omega)=\left(H_{0}^{1}(\Omega)\right)^{\prime}$ is defined by

$$
\langle e(y, u), v\rangle_{H^{-1}, H_{0}^{1}}=\int_{\Omega} \nabla y \cdot \nabla v d x-\int_{\Omega} u v d x
$$

and its partial derivative with respect to y is given by

$$
\left\langle e_{y}(y, u) w, v\right\rangle=\int_{\Omega} \nabla w \cdot \nabla v d x
$$

For a given function $\varphi \in H^{-1}(\Omega)$, equation

$$
\left\langle e_{y}(y, u) w, v\right\rangle_{H^{-1}, H_{0}^{1}}=\int_{\Omega} \nabla w \cdot \nabla v d x=\langle\varphi, v\rangle_{H^{-1}, H_{0}^{1}}
$$

has a unique solution and $\|w\|_{H_{0}^{1}} \leq C\|\varphi\|_{H^{-1}}$ for some constant $C>0$ (Lax-Milgram Theorem). Consequently, (8) is satisfied.

In order to apply the Theorem we compute the remaining derivatives:

$$
\begin{aligned}
e_{u}(y, u) h & =h \\
J_{y}(y, u) w & =y-z_{d} \\
J_{u}(y, u) & =\alpha u
\end{aligned}
$$

The optimality system is then given through:

$$
\begin{aligned}
\int_{\Omega} \nabla y \cdot \nabla v d x & =\int_{\Omega} u v d x, \quad \forall v \in H_{0}^{1}(\Omega) \\
\int_{\Omega} \nabla p \cdot \nabla v d x & =\int_{\Omega}\left(y-z_{d}\right) v d x, \quad \forall v \in H_{0}^{1}(\Omega) \\
\alpha u+p & =0, \quad \text { a.e. in } \Omega
\end{aligned}
$$

where we used that

$$
\left\langle e_{y}(y(\bar{u})) w, v\right\rangle=\int_{\Omega} \nabla w \cdot \nabla v d x=\int_{\Omega} \nabla v \cdot \nabla w d x=\left\langle w, e_{y}(\bar{y}, \bar{u})^{*} v\right\rangle_{H_{0}^{1}, H^{-1}}
$$

and, similarly,

$$
\left(e_{u}(\bar{y}, \bar{u}) h, \phi\right)_{L^{2}(\Omega)}=\int_{\Omega} h \phi d x=\left(h, e_{u}(\bar{y}, \bar{u})^{*} \phi\right)
$$

Lagrangian derivation

Consider again problem (\mathcal{P}) with $J: Y \times U \longrightarrow \mathbb{R}$ and $e: Y \times U \longrightarrow W$. The Lagrangian functional is given by

$$
\begin{aligned}
\mathcal{L}: Y \times U \times W^{\prime} & \longrightarrow \mathbb{R} \\
(y, u, p) & \longmapsto \mathcal{L}(y, u, p)=J(y, u)-\langle p, e(y, u)\rangle_{W^{\prime}, W}
\end{aligned}
$$

By differentiating $\mathcal{L}(y, u, p)$ with respect to y in direction w we obtain that

$$
\begin{aligned}
\mathcal{L}_{y}(y, u, p) & =J_{y}(y, u) w-\left\langle p, e_{y}(y, u) w\right\rangle_{W^{\prime}, W} \\
& =J_{y}(y, u) w-\left\langle e_{y}(y, u)^{*} p, w\right\rangle_{Y^{\prime}, Y}
\end{aligned}
$$

Consequently, equation (10b) can also be expressed as

$$
\mathcal{L}_{y}(\bar{y}, \bar{u}, p)=0
$$

In a similar manner, by taking the derivative of $\mathcal{L}(y, u, p)$ with respect to u, in direction h, we obtain

$$
\begin{aligned}
\mathcal{L}_{y}(y, u, p) h & =J_{u}(y, u) h-\left\langle p, e_{u}(y, u) h\right\rangle_{W^{\prime}, W} \\
& =J_{u}(y, u) h-\left\langle e_{u}(y, u)^{*} p, h\right\rangle_{U^{\prime}, U}
\end{aligned}
$$

and, therefore equation (10c) can be written as

$$
\mathcal{L}_{u}(\bar{y}, \bar{u}, p)=0 .
$$

Summarizing, the optimality system (10) can be written in the following way:

$$
\begin{align*}
e(y(\bar{u}), \bar{u}) & =0, \tag{13a}\\
\mathcal{L}_{y}(\bar{y}, \bar{u}, p) & =0, \tag{13b}\\
\mathcal{L}_{u}(\bar{y}, \bar{u}, p) & =0 . \tag{13c}
\end{align*}
$$

Semilinear example

Rigorous derivation

$$
\left\{\begin{array}{l}
\min J(y, u)=\frac{1}{2}\left\|y-z_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2}, \\
\text { subject to: } \\
-\Delta y+y^{3}=u \quad \text { in } \Omega \\
y=0
\end{array} \quad \text { on } \Gamma . ~ \$\right.
$$

Weak formulation of the PDE. Multiplying the state equation by a test function $v \in C_{0}^{\infty}(\Omega)$ and integrating yields

$$
\int_{\Omega}-\Delta y v d x+\int_{\Omega} y^{3} v d x=\int_{\Omega} u v d x
$$

Using integration by parts,

$$
\int_{\Omega} \nabla y \cdot \nabla v d x+\int_{\Omega} y^{3} v d x=\int_{\Omega} u v d x
$$

Since C_{0}^{∞} is dense in $H_{0}^{1}(\Omega)$ and all terms are continuous with respect to v in the $H_{0}^{1}(\Omega)$ norm, we obtain the following variational formulation: Find $y \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla y \cdot \nabla v d x+\int_{\Omega} y^{3} v d x=\int_{\Omega} u v d x, \quad \forall v \in H_{0}^{1}(\Omega)
$$

Consequently, $e: H_{0}^{1}(\Omega) \times L^{2}(\Omega) \longrightarrow H^{-1}(\Omega)$ is defined by

$$
\langle e(y, u), v\rangle_{H^{-1}, H_{0}^{1}}=\int_{\Omega} \nabla y \cdot \nabla v d x+\int_{\Omega} y^{3} v d x-\int_{\Omega} u v d x
$$

for all $v \in H_{0}^{1}(\Omega)$. By monotone operator theory, there exists a unique solution.

Derivatives. The partial derivatives of $e(y, u)$ are given by

$$
\begin{aligned}
\left\langle e_{y}(y, u) w, v\right\rangle_{H^{-1}, H_{0}^{1}} & =\int_{\Omega} \nabla w \cdot \nabla v d x+3 \int_{\Omega} y^{2} w v d x \\
\left\langle e_{u}(y, u) h, v\right\rangle_{H^{-1}, H_{0}^{1}} & =-\int_{\Omega} h v d x
\end{aligned}
$$

Differentiability. Since $y \in H_{0}^{1}(\Omega) \hookrightarrow L^{6}(\Omega)$, we consider the operator

$$
\begin{aligned}
N: L^{6}(\Omega) & \longrightarrow L^{2}(\Omega) \\
y & \longmapsto y^{3} .
\end{aligned}
$$

The derivative of N is given by

$$
N^{\prime}(y) w=3 y^{2} w
$$

Indeed,

$$
\begin{aligned}
\left\|(y+w)^{3}-y^{3}-3 y^{2} w\right\|_{L^{2}} & =\left\|3 y w^{2}+w^{3}\right\|_{L^{2}} \\
& \leq 3\|y\|_{L^{6}}\|w\|_{L^{6}}^{2}+\|w\|_{L^{6}}^{3}=O\left(\|w\|_{L^{6}}^{2}\right) \\
& =o\left(\|w\|_{L^{6}}\right)
\end{aligned}
$$

Lagrangian. The Lagrangian is defined by:

$$
\begin{aligned}
\mathcal{L}(y, u, p)= & \frac{1}{2}\left\|y-z_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2} \\
& -\int_{\Omega} \nabla y \cdot \nabla p d x+\int_{\Omega} y^{3} p d x+\int_{\Omega} u p d x
\end{aligned}
$$

Taking the partial derivative with respect to the state:

$$
\begin{aligned}
& \mathcal{L}_{y}(y, u, p) w=\left(y-z_{d}, w\right)-\int_{\Omega} \nabla w \cdot \nabla p d x-3 \int_{\Omega} y^{2} w p d x \\
&=\int_{\Omega}\left(y-z_{d}\right) w d x-\int_{\Omega} \nabla p \cdot \nabla w d x-3 \int_{\Omega} y^{2} p w d x=0 \\
& \Rightarrow \int_{\Omega} \nabla p \cdot \nabla w d x+3 \int_{\Omega} y^{2} p w d x=\int_{\Omega}\left(y-z_{d}\right) w d x
\end{aligned}
$$

On the other hand, taking the partial derivative with respect to u we get that:

$$
\begin{gathered}
\mathcal{L}_{u}(y, u, p) h=\alpha(u, h)_{L^{2}(\Omega)}+\int_{\Omega} h p d x=0 \\
\Rightarrow \quad \alpha u+p=0 \quad \text { a.e. in } \Omega .
\end{gathered}
$$

Optimality system.

$$
\begin{array}{rlrl}
\int_{\Omega} \nabla y \cdot \nabla v d x+\int_{\Omega} y^{3} v d x & =\int_{\Omega} u v d x, & \forall v \in H_{0}^{1}(\Omega) \\
\int_{\Omega} \nabla p \cdot \nabla w d x+3 \int_{\Omega} y^{2} p w d x & =\int_{\Omega}\left(y-z_{d}\right) w d x, & & \forall w \in H_{0}^{1}(\Omega), \\
\alpha u+p & =0 & & \text { a.e. in } \Omega .
\end{array}
$$

or, in strong form,

$$
\left\{\begin{aligned}
-\Delta y+y^{3} & =u & & \text { in } \Omega, \\
y & =0 & & \text { on } \Gamma, \\
-\Delta p+3 y^{2} p & =y-z_{d} & & \text { in } \Omega, \\
p & =0 & & \text { on } \Gamma, \\
\alpha u+p & =0 & & \text { a.e. in } \Omega .
\end{aligned}\right.
$$

(Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2) Finite dimensional setting

- An example in finite dimensions
- Optimality systems
(3) Theory of PDE Constrained Optimization
- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
(4) Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Elliptic control problem

Optimal control problem

$$
\begin{aligned}
& \min J(y, u)=\frac{1}{2} \int_{\Omega}\left|y-z_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x \\
& \text { subject to: } \\
& -\Delta y=u \\
& \left.y\right|_{\Gamma}=g
\end{aligned}
$$

Elliptic control problem

Optimal control problem

$$
\begin{aligned}
& \min J(y, u)=\frac{1}{2} \int_{\Omega}\left|y-z_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x \\
& \text { subject to: } \\
& -\Delta y=u \quad \text { (distributed control) } \\
& \left.y\right|_{\Gamma}=g
\end{aligned}
$$

Elliptic control problem

Optimal control problem

$$
\min J(y, u)=\frac{1}{2} \int_{\Omega}\left|y-z_{d}\right|^{2} d x+\frac{\alpha}{2} \int_{\Omega}|u|^{2} d x
$$

subject to:

$$
\begin{aligned}
& -\Delta y=u \\
& \left.y\right|_{\Gamma}=g
\end{aligned}
$$

Lagrangian:

$$
\mathcal{L}(y, u, p, \psi)=J(y, u)-\int_{\Omega} p(-\Delta y-u)-\int_{\Gamma} \xi(y-g)
$$

Necessary condition I

$$
\mathcal{L}_{y}(w)=\int_{\Omega}\left(y-z_{d}\right) w-\int_{\Omega} p(-\Delta w)-\int_{\Gamma} \xi w
$$

Necessary condition I

$$
\begin{aligned}
& \mathcal{L}_{y}(w)=\int_{\Omega}\left(y-z_{d}\right) w-\int_{\Omega} p(-\Delta w)-\int_{\Gamma} \xi w \\
& =\int_{\Omega}\left(y-z_{d}\right) w-\int_{\Omega} \nabla p \cdot \nabla w+\int_{\Gamma} p \frac{\partial w}{\partial n}-\int_{\Gamma} \xi w
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow \quad-\Delta p & =y-z_{d} \tag{14}\\
\frac{\partial p}{\partial n} & +\xi=0 \quad \text { on } \Gamma \tag{15}\\
\left.p\right|_{\Gamma} & =0 \tag{16}
\end{align*}
$$

Necessary condition I

$$
\begin{align*}
& \mathcal{L}_{y}(w)=\int_{\Omega}\left(y-z_{d}\right) w-\int_{\Omega} p(-\Delta w)-\int_{\Gamma} \xi w \\
& =\int_{\Omega}\left(y-z_{d}\right) w-\int_{\Omega} \nabla p \cdot \nabla w+\int_{\Gamma} p \frac{\partial w}{\partial n}-\int_{\Gamma} \xi w \\
& =\int_{\Omega}\left(y-z_{d}+\Delta p\right) w-\int_{\Gamma}\left(\frac{\partial p}{\partial n}+\xi\right) w+\int_{\Gamma} p \frac{\partial w}{\partial n}=0 \\
& \Rightarrow \quad-\Delta p=y-z_{d} \tag{14}\\
& \frac{\partial p}{\partial n}+\xi=0 \quad \text { on } \Gamma \tag{15}\\
& \left.p\right|_{\Gamma}=0 . \tag{16}\\
& \mathcal{L}_{u}(v)=\alpha \int_{\Omega} u v+\int_{\Omega} p v=\int_{\Omega}(\alpha u+p) v=0
\end{align*}
$$

Necessary condition I

$$
\begin{gather*}
\mathcal{L}_{y}(w)=\int_{\Omega}\left(y-z_{d}\right) w-\int_{\Omega} p(-\Delta w)-\int_{\Gamma} \xi w \\
=\int_{\Omega}\left(y-z_{d}\right) w-\int_{\Omega} \nabla p \cdot \nabla w+\int_{\Gamma} p \frac{\partial w}{\partial n}-\int_{\Gamma} \xi w \\
=\int_{\Omega}\left(y-z_{d}+\Delta p\right) w-\int_{\Gamma}\left(\frac{\partial p}{\partial n}+\xi\right) w+\int_{\Gamma} p \frac{\partial w}{\partial n}=0 \\
\Rightarrow \quad-\Delta p=y-z_{d} \tag{14}\\
\frac{\partial p}{\partial n}+\xi=0 \quad \text { on } \Gamma \tag{15}\\
\left.p\right|_{\Gamma}=0 . \tag{16}\\
\mathcal{L}_{u}(v)=\alpha \int_{\Omega} u v+\int_{\Omega} p v=\int_{\Omega}(\alpha u+p) v=0 \\
\Rightarrow \quad \alpha u+p=0 . \tag{17}
\end{gather*}
$$

Optimality system:

$$
\begin{aligned}
& \left\{\begin{array}{l}
-\Delta y=u \\
\left.y\right|_{\Gamma}=g
\end{array}\right. \\
& \left\{\begin{array}{l}
-\Delta p=y-z_{d} \\
\left.p\right|_{\Gamma}=0
\end{array}\right. \\
& \alpha u+p=0
\end{aligned}
$$

(adjoint equation)
(optimality condition)

Parabolic control problem

Problem

$$
\left\{\begin{array}{l}
\min J(y, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left|y-z_{d}\right|^{2}+\frac{\alpha}{2} \int_{0}^{T} \int_{\Omega}|u|^{2} \\
\text { subject to: } \\
\frac{\partial y}{\partial t}-\Delta y=f \\
\left.y\right|_{\Gamma}=u \\
y(0)=y_{0}
\end{array}\right.
$$

where y is the state and u the control.

Parabolic control problem

Problem

$$
\left\{\begin{array}{l}
\min J(y, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left|y-z_{d}\right|^{2}+\frac{\alpha}{2} \int_{0}^{T} \int_{\Omega}|u|^{2} \\
\text { subject to: } \\
\frac{\partial y}{\partial t}-\Delta y=f \\
\left.y\right|_{\Gamma}=u \\
y(0)=y_{0}
\end{array}\right.
$$

where y is the state and u the control.

Lagrangian:

$$
\mathcal{L}(y, u, p, \xi, \theta)=J(y, u)-\int_{0}^{T} \int_{\Omega} p\left(\frac{\partial y}{\partial t}-\Delta y-f\right)+\int_{0}^{T} \int_{\Gamma} \xi(y-u)+\int_{\Omega} \theta\left(y(0)-y_{0}\right)
$$

Adjoint equation I

$$
\mathcal{L}_{y}(w)=\int_{0}^{T} \int_{\Omega}\left(y-z_{d}\right) \cdot w-\int_{0}^{T} \int_{\Omega} p \cdot \frac{\partial w}{\partial t}+\int_{0}^{T} \int_{\Omega} p \cdot(\Delta w)+\int_{0}^{T} \int_{\Gamma} \xi \cdot w+\int_{\Omega} \theta \cdot w(0)
$$

Adjoint equation I

$$
\begin{aligned}
\mathcal{L}_{y}(w)= & \int_{0}^{T} \int_{\Omega}\left(y-z_{d}\right) \cdot w-\int_{0}^{T} \int_{\Omega} p \cdot \frac{\partial w}{\partial t}+\int_{0}^{T} \int_{\Omega} p \cdot(\Delta w)+\int_{0}^{T} \int_{\Gamma} \xi \cdot w+\int_{\Omega} \theta \cdot w(0) \\
= & \int_{0}^{T} \int_{\Omega}\left(y-z_{d}\right) \cdot w-\int_{\Omega}\left[p(T) \cdot w(T)-p(0) \cdot w(0)-\int_{0}^{T} \frac{\partial p}{\partial t} \cdot w\right] \\
& -\int_{0}^{T} \int_{\Omega} \nabla p \cdot \nabla w+\int_{0}^{T} \int_{\Gamma} p \cdot \frac{\partial w}{\partial n}+\int_{0}^{T} \int_{\Gamma} \xi \cdot w+\int_{\Omega} \theta \cdot w(0)
\end{aligned}
$$

Adjoint equation I

$$
\begin{aligned}
\mathcal{L}_{y}(w)= & \int_{0}^{T} \int_{\Omega}\left(y-z_{d}\right) \cdot w-\int_{0}^{T} \int_{\Omega} p \cdot \frac{\partial w}{\partial t}+\int_{0}^{T} \int_{\Omega} p \cdot(\Delta w)+\int_{0}^{T} \int_{\Gamma} \xi \cdot w+\int_{\Omega} \theta \cdot w(0) \\
= & \int_{0}^{T} \int_{\Omega}\left(y-z_{d}\right) \cdot w-\int_{\Omega}\left[p(T) \cdot w(T)-p(0) \cdot w(0)-\int_{0}^{T} \frac{\partial p}{\partial t} \cdot w\right] \\
& -\int_{0}^{T} \int_{\Omega} \nabla p \cdot \nabla w+\int_{0}^{T} \int_{\Gamma} p \cdot \frac{\partial w}{\partial n}+\int_{0}^{T} \int_{\Gamma} \xi \cdot w+\int_{\Omega} \theta \cdot w(0) \\
= & \int_{0}^{T} \int_{\Omega}\left(y-z_{d}+\frac{\partial p}{\partial t}+\Delta p\right) \cdot w-\int_{0}^{T} \int_{\Gamma}\left(\frac{\partial p}{\partial n}-\xi\right) \cdot w \\
& +\int_{0}^{T} \int_{\Gamma} p \cdot \frac{\partial w}{\partial n}-\int_{\Omega} p(T) \cdot w(T)+\int_{\Omega}(p(0)+\theta) \cdot w(0)
\end{aligned}
$$

Adjoint equation II

$$
\begin{gather*}
\Rightarrow \quad-\frac{\partial p}{\partial t}-\Delta p=y-z_{d} \\
 \tag{19}\\
\frac{\partial p}{\partial n}=\xi \text { en } \Gamma \tag{20}\\
\left.p\right|_{\Gamma}=0 \tag{21}\\
p(T)=0 \tag{22}\\
p(0)+\theta=0
\end{gather*}
$$

$$
\begin{gather*}
\mathcal{L}_{u}(v)=\alpha \int_{0}^{T} \int_{\Gamma} u v-\int_{0}^{T} \int_{\Gamma} \xi v=\int_{\Omega}(\alpha u-\xi) v=0 \\
\Rightarrow \quad \alpha u-\xi=0 \quad \text { on } \Gamma . \tag{23}
\end{gather*}
$$

Optimality system:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} y-\Delta y=f \\
\left.y\right|_{\Gamma}=u \\
y(0)=y_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
-\partial_{t} p-\Delta p=y-z_{d} \\
\left.p\right|_{\Gamma}=0 \\
p(T)=0
\end{array}\right. \\
& \alpha u-\frac{\partial p}{\partial n}=0
\end{aligned}
$$

(state equation)
(adjoint equation)
(optimality condition)
(Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2 Finite dimensional setting

- An example in finite dimensions
- Optimality systems
(3) Theory of PDE Constrained Optimization
- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
(4) Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Theorem

Let U be a Banach space and $S \subset U$ a convex set. Let $f: U \longrightarrow \mathbb{R}$ be twice continuously F-differentiable in a neighborhood of $\bar{u} \in U$. If \bar{u} satisfies the necessary condition

$$
\begin{equation*}
f^{\prime}(u)(u-\bar{u}) \geq 0, \quad \forall u \in S, \tag{24}
\end{equation*}
$$

and there exists some $\delta>0$ such that

$$
\begin{equation*}
f^{\prime \prime}(u)[u-\bar{u}] \geq \delta\|u\|_{U}^{2}, \quad \forall u \in U \tag{25}
\end{equation*}
$$

then there exist contstants $\epsilon>0$ and $\sigma>0$ such that

$$
f(u) \geq f(\bar{u})+\sigma\|u-\bar{u}\|_{U}^{2}
$$

for all $u \in S:\|u-\bar{u}\|_{U} \leq \epsilon$. Therefore, \bar{u} is a local minimun of f on S.

Since f is twice Fréchet differentiable, a Taylor expansion can be used. Consequently, for some $\theta \in[0,1]$

$$
\begin{align*}
f(u) & =f(\bar{u})+f^{\prime}(\bar{u})(u-\bar{u})+\frac{1}{2} f^{\prime \prime}(\bar{u}+\theta(u-\bar{u}))[u-\bar{u}]^{2} \\
& \geq f(\bar{u})+\frac{1}{2} f^{\prime \prime}(\bar{u}+\theta(u-\bar{u}))[u-\bar{u}]^{2} \tag{24}\\
& =f(\bar{u})+\frac{1}{2} f^{\prime \prime}(\bar{u})[u-\bar{u}]^{2}+\frac{1}{2}\left[f^{\prime \prime}(\bar{u}+\theta(u-\bar{u}))-f^{\prime \prime}(\bar{u})\right][u-\bar{u}]^{2}
\end{align*}
$$

Since f is twice continuously Fréchet differentiable, there exists some $\epsilon>0$ such that

$$
\|u-\bar{u}\| \leq \epsilon \Rightarrow\left|\left[f^{\prime \prime}(\bar{u}+\theta(u-\bar{u}))-f^{\prime \prime}(u)\right][u-\bar{u}]^{2}\right| \leq \frac{\delta}{2}\|u-\bar{u}\|_{U}^{2}
$$

Consequently,

$$
\begin{aligned}
f(u) & \geq f(\bar{u})+\frac{1}{2} f^{\prime \prime}(\bar{u})[u-\bar{u}]^{2}-\frac{\delta}{4}\|u-\bar{u}\|_{U}^{2} \\
& \geq f(\bar{u})+\frac{\delta}{4}\|u-\bar{u}\|_{U}^{2}
\end{aligned}
$$

by (25).

The result follows by choosing $\sigma=\frac{\delta}{4}$.

Theorem

Let $J: Y \times U \longrightarrow \mathbb{R}$ and $e: Y \times U \longrightarrow W$ be twice continuously F -differentible. Let (\bar{y}, \bar{u}, p) be a solution to the optimality system (10). If there exists some constant $\delta>0$ such that

$$
\mathcal{L}_{(y, u)}^{\prime \prime}[(w, h)]^{2} \geq \delta\|h\|_{U}^{2}
$$

(SSC)
for all $(w, h) \in Y \times U$ that satisfy the equation

$$
e_{y}(\bar{y}, \bar{u}) w+e_{u}(\bar{y}, \bar{u}) h=0
$$

then there exist constants $\epsilon>0$ and $\sigma>0$ such that

$$
J(y, u) \geq J(\bar{y}, \bar{u})+\sigma\|u-\bar{u}\|_{U}^{2}
$$

for all $u \in U:\|u-\bar{u}\|_{U} \leq \epsilon$.

Equivalence of (SSC)

The (SSC) condition can be equivalently expressed as,

$$
\begin{aligned}
&(w, h)\left(\begin{array}{ll}
J_{y y}(\bar{y}, \bar{u}) & J_{y u}(\bar{y}, \bar{u}) \\
J_{u y}(\bar{y}, \bar{u}) & J_{u u}(\bar{y}, \bar{u})
\end{array}\right)\binom{w}{h} \\
&-\left\langle p,(w, h)\left(\begin{array}{ll}
e_{y y}(\bar{y}, \bar{u}) & e_{y u}(\bar{y}, \bar{u}) \\
e_{u y}(\bar{y}, \bar{u}) & e_{u u}(\bar{y}, \bar{u})
\end{array}\right)\binom{w}{h}\right\rangle_{W^{\prime}, W} \geq \delta\|h\|_{U}^{2}
\end{aligned}
$$

for all $(w, h) \in Y \times U$ that satisfy the equation

$$
e_{y}(\bar{y}, \bar{u}) w+e_{u}(\bar{y}, \bar{u}) h=0
$$

Example

Consider again the optimal control problem

$$
\left\{\begin{array}{l}
\min J(y, u)=\frac{1}{2}\left\|y-z_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2} \\
\text { subject to: } \\
\quad \int_{\Omega} \nabla y \cdot \nabla u d x+\int_{\Omega} y^{3} v d x=\int_{\Omega} u v d x, \quad \forall v \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Recall that the first derivatives are given by

$$
\begin{aligned}
\left\langle e_{y}(y, u) w, v\right\rangle_{H^{-1}, H_{0}^{1}} & =\int_{\Omega} \nabla w \cdot \nabla v d x+3 \int_{\Omega} y^{2} w v \\
\left\langle e_{y}(y, u) h, v\right\rangle_{H^{-1}, H_{0}^{1}} & =-\int_{\Omega} h v d x
\end{aligned}
$$

and the second derivatives are given by

$$
\begin{gathered}
\left\langle e_{y y}(y, u)[w]^{2}, v\right\rangle_{H^{-1}, H_{0}^{1}}=6 \int_{\Omega} y w^{2} v d x \\
e_{y u}(y, u)=0, \quad e_{u y}(y, u)=0, \quad e_{u u}(y, u)=0
\end{gathered}
$$

For the quadratic cost functional we get:

$$
\begin{array}{ll}
J_{y y}(\bar{y}, \bar{u})[w]^{2}=\|w\|_{L^{2}(\Omega)}^{2}, & J_{y u}(y, u)=0 \\
J_{u y}(y, u)=0, & J_{u u}(y, u)[h]^{2}=\alpha\|h\|_{L^{2}(\Omega)}^{2}
\end{array}
$$

Condition (SSC) is therefore equivalent to

$$
\|w\|_{L^{2}(\Omega)}+\alpha\|h\|_{L^{2}(\Omega)}-6 \int_{\Omega} y w^{2} p d x \geq \delta\|h\|_{L^{2}(\Omega)}^{2}
$$

This holds in particular if

$$
\int_{\Omega}(1-6 y p) w^{2} d x \geq 0
$$

(Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2. Finite dimensional setting

- An example in finite dimensions
- Optimality systems

3. Theory of PDF Constrained Optimization

- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
4 Numerical solution of optimality systems - Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Sequential quadratic programming

Semilinear example
Starting point is the optimality system, which in absence of control constraints is given by

$$
0=F(y, p, u)=\left\{\begin{array}{l}
-\Delta y+y^{3}-u \\
\left.y\right|_{\Gamma} \\
-\Delta p+3 y^{2} \lambda-y+z_{d} \\
\left.p\right|_{\Gamma} \\
\alpha u+p
\end{array}\right.
$$

Sequential quadratic programming

Semilinear example
Starting point is the optimality system, which in absence of control constraints is given by

$$
0=F(y, p, u)=\left\{\begin{array}{l}
-\Delta y+y^{3}-u \\
\left.y\right|_{\Gamma} \\
-\Delta p+3 y^{2} \lambda-y+z_{d} \\
\left.p\right|_{\Gamma} \\
\alpha u+p
\end{array}\right.
$$

Using a Newton iteration for the coupled system $F(y, p, u)=0$ yields

$$
\left\{\begin{array}{l}
-\Delta \delta_{y}+3 y^{2} \delta_{y}-\delta_{u}=\Delta y-y^{3}+u \\
\left.\delta_{y}\right|_{\Gamma}=0 \\
-\Delta \delta_{p}+3 y^{2} \delta_{p}+6 p \delta_{y}-\delta_{y}=\Delta p-3 y^{2} p+y-z_{d} \\
\left.\delta_{p}\right|_{\Gamma}=0 \\
\alpha \delta_{u}+\delta_{p}=-\alpha u-p
\end{array}\right.
$$

and, hence, the Newton update $y_{n+1}=y_{n}+\delta_{y}, p_{n+1}=p_{n}+\delta_{p}, u_{n+1}=u_{n}+\delta_{u}$.

General formulation

In general, an optimality system is given by:

$$
\left\{\begin{aligned}
\mathcal{L}^{\prime}{ }_{(y, u)}(\bar{y}, \bar{u}, p) & =0 \\
-e(\bar{y}, \bar{u}) & =0
\end{aligned}\right.
$$

By applying Newton's method, we obtain the following linearized system:

$$
\begin{gathered}
\left(\begin{array}{cc}
\mathcal{L}_{(y, u)}^{\prime \prime}\left(y_{k}, u_{k}, p_{k}\right) & -e^{\prime}\left(y_{k}, u_{k}\right)^{*} \\
-e^{\prime}\left(y_{k}, u_{k}\right) & 0
\end{array}\right)\binom{\binom{\delta_{y}}{\delta_{u}}}{\delta_{p}}=\left(\begin{array}{c}
e_{y}\left(y_{k}, u_{k}\right)^{*} p_{k}-J_{y}\left(y_{k}, u_{k}\right) \\
e_{u}\left(y_{k}, u_{k}\right)^{*} p_{k}-J_{u}\left(y_{k}, u_{k}\right) \\
e\left(y_{k}, u_{k}\right)
\end{array}\right) \\
y_{k+1}=y_{k}+\delta_{y}, \quad u_{k+1}=u_{k}+\delta_{u}, \quad p_{k+1}=p_{k}+\delta_{p}
\end{gathered}
$$

General formulation

In general, an optimality system is given by:

$$
\left\{\begin{aligned}
\mathcal{L}^{\prime}{ }_{(y, u)}(\bar{y}, \bar{u}, p) & =0 \\
-e(\bar{y}, \bar{u}) & =0
\end{aligned}\right.
$$

By applying Newton's method, we obtain the following linearized system:

$$
\begin{gathered}
\left(\begin{array}{cc}
\mathcal{L}_{(y, u)}^{\prime \prime}\left(y_{k}, u_{k}, p_{k}\right) & -e^{\prime}\left(y_{k}, u_{k}\right)^{*} \\
-e^{\prime}\left(y_{k}, u_{k}\right) & 0
\end{array}\right)\binom{\binom{\delta_{y}}{\delta_{u}}}{\delta_{p}}=\left(\begin{array}{c}
e_{y}\left(y_{k}, u_{k}\right)^{*} p_{k}-J_{y}\left(y_{k}, u_{k}\right) \\
e_{u}\left(y_{k}, u_{k}\right)^{*} p_{k}-J_{u}\left(y_{k}, u_{k}\right) \\
e\left(y_{k}, u_{k}\right)
\end{array}\right) \\
y_{k+1}=y_{k}+\delta_{y}, \quad u_{k+1}=u_{k}+\delta_{u}, \quad p_{k+1}=p_{k}+\delta_{p}
\end{gathered}
$$

The latter corresponds to the necessary and sufficient optimality condition of the following linear-quadratic problem:

$$
\left\{\begin{array}{l}
\min _{\left(\delta_{y}, \delta_{u}\right)} \frac{1}{2} \mathcal{L}_{(y, u)}^{\prime \prime}\left(y_{k}, u_{k}, p_{k}\right)\left[\left(\delta_{y}, \delta_{u}\right)\right]^{2}+\mathcal{L}_{(y, u)}^{\prime}\left(y_{k}, u_{k}, p_{k}\right)\left(\delta_{y}, \delta_{u}\right) \\
\text { subject to: } \\
\quad e_{y}\left(y_{k}, u_{k}\right) \delta_{y}+e_{u}\left(y_{k}, u_{k}\right) \delta_{u}+e\left(y_{k}, u_{k}\right)=0
\end{array}\right.
$$

SQP properties

- If $\left(y_{k}, u_{k}\right) \in V(\bar{y}, \bar{u})$, where (\bar{y}, \bar{u}) is an optimal solution to the PDE constrained optimization problem such that $e^{\prime}(\bar{y}, \bar{u})$ is surjective and

$$
\mathcal{L}_{(y, u)}^{\prime \prime}(\bar{y}, \bar{u}, p)[(w, h)]^{2} \geq \kappa\|h\|_{U}^{2},
$$

for some $\kappa>0$, and the second derivatives of J and e are Lipschitz continuous, then there exists $\delta_{p} \in W^{\prime}$ such that the update system is well-posed.

SQP properties

- If $\left(y_{k}, u_{k}\right) \in V(\bar{y}, \bar{u})$, where (\bar{y}, \bar{u}) is an optimal solution to the PDE constrained optimization problem such that $e^{\prime}(\bar{y}, \bar{u})$ is surjective and

$$
\mathcal{L}_{(y, u)}^{\prime \prime}(\bar{y}, \bar{u}, p)[(w, h)]^{2} \geq \kappa\|h\|_{U}^{2},
$$

for some $\kappa>0$, and the second derivatives of J and e are Lipschitz continuous, then there exists $\delta_{p} \in W^{\prime}$ such that the update system is well-posed.

- Since the SQP corresponds to the Newton method applied to the optimality system, it is also known as Lagrange-Newton approach. Local quadratic convergence of this approach can be proved similarly as for Newton's method.

SQP properties

- If $\left(y_{k}, u_{k}\right) \in V(\bar{y}, \bar{u})$, where (\bar{y}, \bar{u}) is an optimal solution to the PDE constrained optimization problem such that $e^{\prime}(\bar{y}, \bar{u})$ is surjective and

$$
\mathcal{L}_{(y, u)}^{\prime \prime}(\bar{y}, \bar{u}, p)[(w, h)]^{2} \geq \kappa\|h\|_{U}^{2},
$$

for some $\kappa>0$, and the second derivatives of J and e are Lipschitz continuous, then there exists $\delta_{p} \in W^{\prime}$ such that the update system is well-posed.

- Since the SQP corresponds to the Newton method applied to the optimality system, it is also known as Lagrange-Newton approach. Local quadratic convergence of this approach can be proved similarly as for Newton's method.
- Control constraints may be included within this framework as well. In that case each linear quadratic subproblem also contains control constraints for the increments.

SQP properties

- If $\left(y_{k}, u_{k}\right) \in V(\bar{y}, \bar{u})$, where (\bar{y}, \bar{u}) is an optimal solution to the PDE constrained optimization problem such that $e^{\prime}(\bar{y}, \bar{u})$ is surjective and

$$
\mathcal{L}_{(y, u)}^{\prime \prime}(\bar{y}, \bar{u}, p)[(w, h)]^{2} \geq \kappa\|h\|_{U}^{2},
$$

for some $\kappa>0$, and the second derivatives of J and e are Lipschitz continuous, then there exists $\delta_{p} \in W^{\prime}$ such that the update system is well-posed.

- Since the SQP corresponds to the Newton method applied to the optimality system, it is also known as Lagrange-Newton approach. Local quadratic convergence of this approach can be proved similarly as for Newton's method.
- Control constraints may be included within this framework as well. In that case each linear quadratic subproblem also contains control constraints for the increments.
- A mesh independence principle can also be proved in this case if the discretization satisfies some technical assumptions.
(Motivation
- Optimal heating
- Optimal flow control
- Numerical weather prediction

2 Finite dimensional setting

- An example in finite dimensions
- Optimality systems

3. Theory of PDF Constrained Optimization

- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
4 Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Nonsmooth optimality system

Unilateral control constraint

A nonsmooth approach for the solution of the optimality system consists in considering it as an operator equation

$$
0=F(y, p, u)=\left\{\begin{array}{l}
-\Delta y+y^{3}-u \\
\left.y\right|_{\Gamma} \\
-\Delta p+3 y^{2} p-y+z_{d} \\
\left.p\right|_{\Gamma}=0 \\
\alpha \bar{u}+p+\lambda_{b}=0 \\
\lambda_{b}-\max \left(0, \lambda_{b}+c(u-b)\right)
\end{array}\right.
$$

Due to the max function, F is not Fréchet differentiable.

Nonsmooth optimality system

Unilateral control constraint

A nonsmooth approach for the solution of the optimality system consists in considering it as an operator equation

$$
0=F(y, p, u)=\left\{\begin{array}{l}
-\Delta y+y^{3}-u \\
\left.y\right|_{\Gamma} \\
-\Delta p+3 y^{2} p-y+z_{d} \\
\left.p\right|_{\Gamma}=0 \\
\alpha \bar{u}+p+\lambda_{b}=0 \\
\lambda_{b}-\max \left(0, \lambda_{b}+c(u-b)\right)
\end{array}\right.
$$

Due to the max function, F is not Fréchet differentiable.
Is it possible to define a weaker differentiability notion for such a function such that a Newton type iterative scheme can be stated?

Semismoothness

Definition

Let D be an open subset of a Banach space X. The mapping $F: D \subset X \rightarrow Z$ is called Newton differentiable (semismooth) on the open subset $V \subset D$ if there exists a generalized derivative $G: V \rightarrow \mathcal{L}(X, Z)$ such that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{\|h\|_{X}}\|F(x+h)-F(x)-G(x+h) h\|_{Z}=0 \tag{26}
\end{equation*}
$$

for every $x \in V$.

Example

Consider the absolute value function

$$
\begin{aligned}
f=|\cdot|: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto|x|
\end{aligned}
$$

The function is not differentiable at 0 . However, by using the generalized derivative

$$
g(x)= \begin{cases}-1 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{cases}
$$

we obtain for the case $x=0$:
(1) if $h>0: \quad| | x+h|-|x|-|h||=0$,
(2) if $h<0$: $\quad||x+h|-|x|+|h||=|-x-h-x+h|=0$.

Consequently,

$$
\lim _{h \rightarrow 0} \frac{1}{|h|}|f(x+h)-f(x)-g(x+h) h|=0
$$

and $|\cdot|$ is Newton differentiable.

Semismooth Newton method

Theorem

Let \bar{x} be a solution to $F(x)=0$, with F Newton differentiable (semismooth) in an open neighborhood V containing \bar{x}. If

$$
\begin{equation*}
\left\|G(x)^{-1}\right\|_{\mathcal{L}(Z, X)} \leq C \tag{27}
\end{equation*}
$$

for some constant $C>0$ and all $x \in V$, then the Newton iteration

$$
\begin{equation*}
x_{k+1}=x_{k}-G\left(x_{k}\right)^{-1} F\left(x_{k}\right) \tag{28}
\end{equation*}
$$

converges superlinearly to \bar{x} provided that $\left\|x_{0}-\bar{x}\right\|_{X}$ is sufficiently small. If F is strongly semismooth the convergence rate is quadratic.

Proof

Considering that $F(\bar{x})=0$ and the iterates given by (28) it follows that

$$
\begin{align*}
\left\|x_{k+1}-\bar{x}\right\|_{X} & =\left\|x_{k}-G\left(x_{k}\right)^{-1} F\left(x_{k}\right)-\bar{x}\right\|_{X} \\
& =\left\|G\left(x_{k}\right)^{-1}\left(F(\bar{x})-F\left(x_{k}\right)-G\left(x_{k}\right)\left(\bar{x}-x_{k}\right)\right)\right\|_{X} \\
& \leq C\left\|F\left(x_{k}\right)-F(\bar{x})-G\left(x_{k}\right)\left(x_{k}-\bar{x}\right)\right\|_{Z} . \tag{29}
\end{align*}
$$

Thanks to the Newton differentiability if then follows, for $\rho=\frac{1}{2 C}$, that there exists a ball $B_{\delta}(\bar{x})$ such that if $x_{k} \in B_{\delta}(\bar{x})$, then

$$
\left\|x_{k+1}-\bar{x}\right\|_{X} \leq C \rho\left\|x_{k}-\bar{x}\right\|_{X}=\frac{1}{2}\left\|x_{k}-\bar{x}\right\|_{X}
$$

Consequently, if $\left\|x_{0}-\bar{x}\right\|_{X}<\delta$ then $x_{k} \in B_{\delta}(\bar{x}), \forall k \geq 1$, and

$$
\lim _{k \rightarrow \infty}\left\|x_{k}-\bar{x}\right\|_{X}=0 .
$$

Moreover, from (29) and the Newton differentiability, we get that

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-\bar{x}\right\|_{X}}{\left\|x_{k}-\bar{x}\right\|_{X}} \leq \lim _{k \rightarrow \infty} C \frac{\left\|F\left(x_{k}\right)-F(\bar{x})-G\left(x_{k}\right)\left(x_{k}-\bar{x}\right)\right\|_{Z}}{\left\|x_{k}-\bar{x}\right\|_{X}}=0 .
$$

SSN update

In the case of our semilinear optimality system, the semismooth Newton update looks as follows:

$$
\begin{aligned}
-\Delta \delta_{y}+3 y^{2} \delta_{y}-\delta_{u} & =\Delta y-y^{3}+u \\
\left.\delta_{y}\right|_{\Gamma} & =0 \\
-\Delta \delta_{p}+3 y^{2} \delta_{p}+6 y p \delta_{y}-\delta_{y} & =\Delta p-3 y^{2} p+y-z_{d} \\
\left.\delta_{p}\right|_{\Gamma} & =0 \\
\alpha \delta_{u}+\delta_{p}+\delta_{\lambda_{b}} & =-\alpha u-p-\lambda_{b} \\
\delta_{\lambda}-\chi_{\mathcal{A}}\left(\delta_{\lambda}+\alpha \delta_{u}\right) & =-\lambda_{b}+\max \left(0, \lambda_{b}+\alpha(u-b)\right)
\end{aligned}
$$

where $\chi_{\mathcal{A}}$ stand for the indicator function of the active set $\mathcal{A}:=\left\{x: \lambda_{b}+\alpha(u-b) \geq 0\right\}$.

Semismooth Newton update

$y_{n+1}=y_{n}+\delta_{y}, \quad p_{n+1}=p_{n}+\delta_{p}, \quad u_{n+1}=u_{n}+\delta_{u}, \quad \lambda_{n+1}=\lambda_{n}+\delta_{\lambda}$.
(1) Motivation

- Optimal heating
- Optimal flow control
- Numerical weather prediction

2 Finite dimensional setting

- An example in finite dimensions
- Optimality systems

3. Theory of PDF Constrained Optimization

- Basic elements of PDE
- Problem statement and existence of solutions
- Optimality systems
- Lagrangian formalism
- Second order sufficient optimality condition
4 Numerical solution of optimality systems
- Sequential quadratic programming
- Semismooth Newton method
(5) Where to continue?

Further topics

Theory

- Problems with pointwise state or pointwise mixed control-state constraints
- Problems constrained by partical differential inclusions (variational inequalities)
- Problems involving sparsity inducing terms in the cost functional

Numerics

- Discretization methods and error estimates for the numerical approximation of PDE-constrained optimization problems and/or optimality systems
- Efficient solution of sparse PDE-constrained optimization problems
- Reduced space methods for solving PDE-constrained optimization problems Lecture by Todd Munson

Q J.L. Lions
Optimal Control of Systems Governed by Partial Differential Equations
Springer, 1971.
B M. Hinze, R, Pinnau, M. Ullbrich and S. Ullbrich
Optimization with PDE Constraints
Springer, 2009.
F. Tröltzsch

Optimal Control of Partial Differential Equations.
AMS, 2010.
\& A. Borzi and V. Schulz
Computational Optimization of Systems Governed by Partial Differential Equations SIAM, 2012.
Q J.C. De los Reyes
Numerical PDE-Constrained Optimization
Springer, 2015.

[^0]: Proof
 Since J is continuous, it follows that the reduced cost f is also continuous. Since $U_{\text {ad }}$ is a closed bounded subset of a finite dimensional space, it is compact and the result follows by Weierstrass theorem.

