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Mode

Outline Mat 1

Q Motivation

@ Finite dimensional setting

Q Numerical solution of optimality systems

Q Theory of PDE Constrained Optimization
@ Where to continue?
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Q Motivation
@ Optimal heating
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Mode

Optimal heating Mat V]

Let  be a bounded domain in R3 with boundary I" which represents a body that has to be
heated. We may act along the boundary by setting a tfemperature u = u(x).

The goal of the problem consists in getting as close as possible o a given desired temperature
Zq(x) in .
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Mode

Optimal heating Mat =1\

mindJ(y, u) := %/Q(y(x) — zq(x))?dx + g /F u(x)? ds,
subject to:
—Ay=0 in 0,
% _ )\(u 3 y) nT, State equation.
Uy (%) < u(x) < up(x). Control constraints.

The scalar o > 0 can be interpreted as a control cost, which also lead to more regular solutions
of the optimization problem. The function \ represents the heat transfer along the boundary.
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Q Motivation

@ Optimal flow control
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Mode

Forward facing step channel Mat

@ Uncontrolled Navier-Stokes flow Re = 1000.
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Mode

Forward facing step channel Mat

@ Uncontrolled Navier-Stokes flow Re = 1000.

B
e

@ Goal: reduce recirculatons, delay transition to turbulence
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Mode

Problem Mat ]

M
min J(y, u /|y—zd|2dx+ /|u|2 ds
subject to
—vAy+ (y-Vy+Vp=f P
dvy=0
y|F1 =u
y|1“\1“l =g
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Problem

min J(y, u /|y— zq|? dx + — /|u|2
subject to

~vAy+(y-V)y+Vp=f

dvy=0

H|F1 = u (boundary control)

y|1“\1“1 =g

Mode

Mat M

P>
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Mode

Controlled flow Mat =1\
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Mode

Controlled flow Mat =\
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Mode

Wing configuration Mat

upper tunnel-wall

J:mc

L lower tunnel-wall
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Mode

Adapted mesh Mat =\]
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Problem

min J(y,u) = /(V(?ﬁy — pn) é ds

Iy
sujeto a:
dy—vAy+(y-V)y+Vp=0
dvy=20

ylr, = u= asin(2nf(t — t)) (Z?ﬁég : gg)

y|r\r, =g

where I'}, is the boundary of the wing, a denotes the amplitude, f the frequence, 3 is the

suction angle and 4§ is the angle of the valve.

P>

Mode
Mat
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Problem

min J(y,u) = /(Vaﬁy —pii) e ds

'y
sujeto a:
dy—vAy+(y-V)y+Vp=0
dvy=20

ylr, = u = asin(27f(t — t)) <Z$Eg - g;)

y|r\r, =g

where I'}, is the boundary of the wing, a denotes the amplitude, f the frequence, 3 is the

suction angle and 4§ is the angle of the valve.

P>

Mode
Mat
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Results

=iF

(a) Base flow (b) Perturbed flow
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Q Motivation

@ Numerical weather prediction
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Numerical weather prediction Mat =\

The constitutive model is in general known, but not the initial condition.

Problem J
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Primitive equations Mode
. Mat M

Very basic model M
ou ou du Ju wvtan(¢) uw 10p .

a = U.a Uaiy wa T 7 ;a ZQ(wCOS(gb) USln((ﬁ)) + P‘rx
ov ov Jv dv  u’tan(¢) uw 10p .
E——ua—vaiy—wa f—T—;a—y—ZQuSln(qﬁ)ﬁ-Fry

ow ow  Ow ow uw+v* 10dp

E——UE—U@—wg a —;a—I—ZQuCOS((l))—g-l-FrZ

al [ 87’1‘ _ U@ + ( _ ) + iﬁ

ot~ “ox Jdy R cp dt

O 00 o0 0 (Ou 0o dw

ot~ “ox Yoy Yoz ox Toy ' oz

dq  0q Oq dq

ot Yox Yoy War T

-+ Boundary conditions

-+ Initial conditions
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Primitive equations Mode
. Mat M

Very basic model M
ou ou du Ju wvtan(¢) uw 10p .

5= Yo va—y Wo t——— — > Ox 2Q(wcos(¢) — vsin(¢)) + Fry
dv ov ov dv  u?tan(¢) ww 109p .
E——ua—vaiy—wa ?—7—;@—291,1.8111(@5)"‘}?&]

ow ow  Ow ow uw+v* 10dp

Effuafva—yfwa " f;aJrZQucos((b)fquFrz

al — 8£ _ 67’11 + ( _ ) + idﬂ

at — ox oy VT URT

0 O e O (u dv dw

ot~ “ox Yoy Yoz ox Toy ' oz

dq  0q Oq dq

a0 Yox Yoy Yo 9

-+ Boundary conditions

-+ Initial conditions
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Data assimilation

Godl

Mode

Mat M

Data assimilation methods aim at finding a good initial condition of the athmospheric system in

order to get better weather forecasts
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' ' . Mode
Data assimilation Mat |\

Godl

Data assimilation methods aim at finding a good initial condition of the athmospheric system in
order to get better weather forecasts

Q@ Information can be obtained mainly from ground stations, radionsonds or satellite images;
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' ' . Mode
Data assimilation

Mat

Godl

Data assimilation methods aim at finding a good initial condition of the athmospheric system in
order to get better weather forecasts

Q@ Information can be obtained mainly from ground stations, radionsonds or satellite images;

@ Reconstruction results depend strongly on the number of observations.
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DA approaches
O Optimal interpolation
o 3D-Var
@ Ensemble Kalman filter
O Hybrid methods

A
Data assimilation
state
variable
-
7 time
. ' atmosphere m first guess
— = forecast step X analysis
observation analysis first guess

-------- analysis step observation
error error error

14/81



Mode

Data assimilation Mat

4D-Var

min J(y, u) = % Z[H(y(ti)) — za(t)] "Ry ' [H(y(t)) — za(t)]

1

+ 5w = ()] "B 1~ ()]
subject to
y(ty) = M;(y(to)), (system of PDEs)
y(to) = u, (initial condition)

y

where z4 are the observations, yb is the background vector, and R; and B are the observation
and background error covariances, respectively.
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Operational use of 3D-Var
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Q Finite dimensional setting
@ An example in finite dimensions
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Mode

An example in finite dimensions Mat

Linear quadratic optimization problem

min J(y, w) = 3 |y — zal* + § ul®

subject to: (QP)
Ay=u
u € Uyg,

where y, u € R" correspond to the state and control variables, o > 0, U, 4 is a closed convex
set and A € M., is invertible.
|| - || and (-, -) stand for the euclidean norm and scalar product, respectively.
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Mode

An example in finite dimensions Mat

Linear quadratic optimization problem

min J(y, u) = § ly — zal* + § [|ull®
subject to: (QP)
Ay=u

u € Uyg,

where y, u € R" correspond to the state and control variables, o > 0, U,q is a closed convex
setand A € M, «,, is invertible.
|| - || and (-, -) stand for the euclidean norm and scalar product, respectively.

By introducing S = A~ ! we obtain that y = Su and we may rewrite the cost function in the
following reduced form:

J(y,u) =J(Su,u) =: f(u).

As a consequence we obtain the following reduced optimization problem:

min f(u). rQP)

u€Uaq
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Mode

Existence of optimal solution Mat

Definition

A vector i1 € U,gq is called (local) optimal solution to (rQP) if
S <f(u), VYu€ Uy (Yu€ UyqgNB()).

Its correspondent state y = Su is called optimal state and the matrix S : R™ — R™ solution or
control-to-state operator.

v
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Mode

Existence of optimal solution Mat

Definition
A vector i1 € U,gq is called (local) optimal solution to (rQP) if

F(@) <f(w), Vu€Us (Vi€ UpgNBi()).

Its correspondent state y = Su is called optimal state and the matrix S : R™ — R™ solution or
control-to-state operator.

v

Theorem

Let U,q be a non empty, closed and bounded set, and A an invertible matrix. Then there exists
at least an optimal control for (rIQP)

v

Proof

Since J is continuous, it follows that the reduced cost f is also continuous. Since U, 4 is a closed
bounded subset of a finite dimensional space, it is compact and the result follows by
Weierstrass theorem.
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First order optimality condition

Theorem

Let &1 be a local optimal solution for (IQP). Then it satisfies the variational inequality:

f(a)(v—1u) >0, forall v € Uyg.

Mode

Mat M

Proof

[ is differentiable, U,q is convex and ti is a local optimal solution, i.e., f(&t) < f(w),
Yw € Uyq N Br(1). Taking w = t + t(v — &), with 0 < t < 1 and v — & admissible,

0<f(u+tlv—u))—f(w).
Dividing by t and taking the limit:

0< LB ) ) g iy ),
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Mode

First order optimality condition Mat =]

Theorem

Let & be a local optimal solution for (TQP). Then it satisfies the variational inequality:

f(a)(v—1u) >0, forall v € Uyg.

Proof

[ is differentiable, U,q is convex and ti is a local optimal solution, i.e., f(&t) < f(w),
Yw € Uyq N Br(@). Taking w = w + t(v — ), with 0 < t < 1 and v — & admissible,

0<f(u+tlv—u))—f(w).
Dividing by t and taking the limit:

o<t t(v_tﬂ)) I =8 i — )

@ Thanks to the strong convexity of the reduced cost function and the convexity of U, .,
the first order optimality condition is both necessary and sufficient.
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Q Finite dimensional setting

@ Optimality systems
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Mode

First technique Mt

Replace y = A~ 'u and consider

1
minf(w) = o A" u = za[* 4 3 full
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Mode

First tfechnique Mat =\

Replace y = A~ 'u and consider
. 1 —1 2 (07 2
min f(u) = 2 A~ w — za||” + ) (]

Necessary condition:

(Vf(w),v—1u)=(A""a—z4,A" (v— 1)) + a(t,v— )

20/81



First technique

Replace y = A~ 'u and consider
min f(u) = = A" = 2P+ £
2 2
Necessary condition:

(Vf(a),v—u)=(A""'a—z4, A" (v—1)) + a(i,v — i)
= (A T(y—zq),v— 1) +a(,v—1) > 0,Vv € Uy
N———

=pr

Mode

Mat M
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First technique

Replace y = A~ 'u and consider

1
min f(u) = 5 HAflu - de2 + % [lul|®

Necessary condition:

(Vf(w),v—1u)=(A""a—z4,A" (v— 1)) + a(t,v— )

or, equivalently,

= (A (g —zq),v— 1) +a(i,v— 1) > 0,Yv € Uy
N———

=pr

ATp =y —zq (adjoint equation)
(at+ p,v—1u) > 0,Vv € Uy

(optimality condition)

Mode

Mat M
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Mode

Second technique Mt

Lagrangian:

1 2 2
Ly.wp) = 5 ly—zal* + 5 ul’ ~ (pay - w).
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Mode

Second technique Mat =\

Lagrangian:
Ll wp) = 5 ly— 2l + 5l ~ (b, 4y — w)
Necessary condition:
0 Ly(w)=(y—zq,w) — (p,Aw) = (—ATp+y—z4,w) =0
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Mode

Second technique Mat =\

Lagrangian:
Ll wp) = 5 ly— 2l + 5l ~ (b, 4y — w)
Necessary condition:
0 Ly(w)=(y—zq,w) — (p,Aw) = (—ATp+y—z4,w) =0

= ATp=y—2z; (adjoint equation)
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Mode

Second technique Mat =\

Lagrangian:
Ll wp) = 5 ly— 2l + 5l ~ (b, 4y — w)
Necessary condition:
0 Ly(w) = (y—za,w) — (p,Aw) = (—A'p+y— zq,w) =0

= ATp=y—2z; (adjoint equation)

0 Ly(v—u)=(au,v—u)+ (p,v—u) > 0,Yv € Uyq
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Mode

Second technique Mat =\

Lagrangian:
£y, p) = 5y — 2l + 5l — (b, Ay — w).
Necessary condition:
0 Ly(w)=(y—zq,w) — (p,Aw) = (—ATp+y—z4,w) =0

= ATp=y—2z; (adjoint equation)

0 Ly(v—u)=(au,v—u)+ (p,v—u) > 0,Yv € Uyq

= (au+p,v—u) > 0,Vv € Uyy (optimality condition)
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Mode

Optimality system Mat =|\]

Let u be a local optimal solution to problem (QP). Then it satisfies:

Ay=u (state equation)
A'p=y—z (adjoint equation)
(au+p,v—u) > 0,Vv € Uy (optimality condition)

@ The optimality condition can also be expressed by means of the projection operator on a
convex set:

u= Py, (u—c(p+au)), Ye > 0.

@ One frequent choice for U, 4 is given by the so-called box constraints
Uad = {u €R" : ug < u < wp},

where u,, w, € R" satisfy u, < u;, componentwise.
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Mode

Karush-Kuhn-Tucker Mat

Theorem

Let (g, it) be an optimal pair and U,g = {u € R™ : 1y < u < uy,}. Then there exist multipliers
p € R"and A4, A\p € R™ such that:

Ay = u,
A'p =g — za,
att+p—Ag+Xp =0,
Aa >0, Ap >0,

AT (o — @) = \J (- w) = O,

ug < u < u,.
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Proof
From the optimality condition we obtain that

(p+au,u) < (p+ au,u), Yu € Uy,

which implies that w is solution of

in (p+an,u) = o 1 (p+ o), w.
=

Thanks to the special structure of U,q and the independence of the w;’s, it then follows that

(p+ou), ;= min (p+an), w
Ua,iSuiSub,f

fori=1,..., L Consequently,

M

B u; it (p+au), <o,
u; =
Uq; If (p+oau),>0.

Otherwise (p + att), = O.
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Let us now define the multipliers:

Ag i= max (6,p + 0411) , @
Ap := |min (0,p + an)|,

where max, min and | - | are considered componentwise. Then, it follows that
)‘a207 ua—leSO, (Aayua_a)zoa

)\bZO; a—ubSO, ()\b,a—ub):O,

which is called a complementary system. From (2) we then obtain that

/\a—)\b:p—i-aa.

25/81



. . Mode
Complementarity function Mat = V]
The last three relations of the optimality system, namely,

)\aZOa >\b207
Aa (ta = ) = A (& — up) = O,

Ug < u < up.
can be rewritten as
Ag = —min(0, A\ + c(u — a)), Ve >0
Ap = max(0, A\, + c(u — b)), Ve > 0,

and the optimality system to be solved

A = i,

A'p =7y — za,

Qi+ p—Aa+Ap =0,

Ao = —min(0, Aq + c(u — a))
Ap = max(0, A, + ¢(u — b))
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Q Theory of PDE Constrained Optimization
Q@ Basic elements of PDE
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Integration by parts MR

Let Q € RY be a bounded Lipschitz domain with boundary I'. By applying Green’s formula,

with y, v € C*(Q), we obtain that

[ opte) ax = [ wxiyGondx) ds— [ Dt ax

where n;(x) denotes the i-th component of the exterior normal vector to {2 at the point x € T’
and ds the Lebesgue surface measure at the boundary 1.

If in addition v = 0 on I" then

/Q y(o) De(x)dx = — /Q o(x) Dy (x)dx.

More generally, we obtain the following formula

/y(x)D“v(x)dx:(—l)la/ o) D y(x)dx,  with |a] < I,
JQ Q

where o = (ozl, e aN) is @ multi-index and D the corresponding diferentiation operator.
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Weak derivatives Mat

Let LIIUC(Q) denote the set of locally integrable functions on {2, i.e., infegrable on any
compact subset of ().

Definition
Lety € L .(©2) and a a given multi-index. If there exists a function w € L} _(£2) such that

x)D%v(x = (=)l [ wix)v(x
| wprete) ax = (<1 [ wix)otx)a

Q

for all v € C§°(€2), then w is called the derivative of order k of y in the weak sense or weak
derivative, and is denoted by w = D%y.
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Example Mat =I\]

y(x) = |x|in 2 = (=1, 1). The weak derivative of y(x) is given by

Y'(x) = wlx) =

{1 ifx € (—1,0),

1 ifx € [0,1).

Indeed, forv € C°(—1, 1),

1

/ " el (e)ee = i(—x>v’<x>dx+ / ()

0

(1)— /01 1v(x)dx

—/1(—1)v(x)+x.v(x)

= —x.v(x) B

_ /  o(x)u(x)dx.

1

Note that the value of y’ at the point x = 0 is not important since the set {x = 0} has zero
measure.
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Sobolev spaces Mt

Definition

Let 1 < p < oo and k € N. The space of functions y € LP(§2) whose weak derivatives Dy,
Va : |a] < k exist and belong to LP((2) is denoted by W P(Q) and is called Sobolev space.
This space is endowed with the norm

1/p

T zjéwwww

jal <k

If p = oo the space W P(Q) is defined in a similar way and endowed with the norm

Ilwoce) = g 17 wlls

The spaces W*P((2) constitute Banach spaces.
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In the special case p = 2 the Sobolev spaces are denoted by
H*(Q) := WF2(Q).
A frequently used space is
H'(Q) ={yeL*Q):DyecL*N),i=1,...,N}

endowed with the norm

1/2
Wil = ( [+ |Vy|2>dx)

with |[Vy|? = (D1y)? + - - - + (Dyy)?. and the scalar product

(u,v)Hl(Q):/u-vdx+/Vu-Vvdx.
Q Q

The space H! (Q) constitutes a Hilbert space with the provided scalar product.
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Definition

The closure of C5°(€2) in WP(Q) is denoted by WP (€2). The resulting space is endowed
with the WP norm and constitutes a closed subspace of W*P((2).

Theorem

Let Q2 € RY be a bounded Lipschitz domain. There exist a bounded linear mapping
7 : WHP(Q) — LP(T) such that

(Ty)(x) = y(x) ae.onl’,

foreach y € C(9).

Definition

The function Ty is called the trace of y on I' and 7 is called the trace operator.

32/81



Consider the following problem:

—Ay=7f in €2,
{ y=~0 onI &

Assuming y is a classical solution, mulfiplying (3) with a test function v € CSO(Q) and

integrating over ) we obtain
—/ vAydx:/fvdx7
Q Q

which using intfegration by parts yields

—/vaﬁyds+/Vy-Vvdx—/fvdx,
Q Q Q

where dzy = Vy - fi. Since v = 0 on T, it follows that

/Vy~Vvdx:/fvdx.
Q Q

Since C3°(£2) is dense into H{ (£2) and both terms in the previous equation are continuos with
respect to v € H} (€2) then the equation holds for all v € Hy (12).
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Definition
A function y € Hy (2) is called a weak solution for problem (3) if it satisfies the following
variational formulation:

/Vy-Vvdxz/fvdx, Vv € Hy(Q).
Q Q
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Definition
A function y € Hj () is called a weak solution for problem (3) if it satisfies the following
variational formulation:

/Vy-Vvdx—/fvdx7 Vv € Hy ().
Q Q

Theorem (Minty-Browder)
Let V be a reflexive Banach space, £ € V' and A : V — V' be an operator satisfying
A'is monotone, i.e., forall u,v € V, (A(u) — A(v), u — vy, vy > 0.

A is hemicontinuous, i.e., the function t — (A(u + tv), w)y- v is continuous on the
interval [0, 1], forall u, v, w € V.

<A(u)7u>v’,v _
Tally = 100

Then there exists a solution to the variational equation

Alis coercive, i.e., lim |, - 00

<A(y)7 v>V’,V = <€7 U>V’,V7 forallv e V.

If A is strictly monotone, then the solution is unique.
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Q@ Problem statement and existence of
solutions

Q Theory of PDE Constrained Optimization
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Problem statement Mat ]

Consider the following general PDE-constrained optimization problem:

min J(y, u),
subject to: P>
e(y,u) =0,

whereJ: Y XU — Rande: Y XU — W,and Y, U and W are reflexive Banach spaces.
We assume that there exists a unique solution y(u) to e(y, u) = 0 and refer to the operator

G:U—Y
u — y(u) = G(u),

which assigns to each u € U the solution y(u) to

e(y(u),u) =0 @

as control-to-state operator.
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Reduced problem Mat

Using the control-to-state operator we can write the optimal control problem in reduced form
as

min f(u) = J(y(uw), u). R

ucU

Hereafter we assume that f: U — R is bounded from below.
Definition

An element i1 € U is called a global solution to (R) if f (i) < f(u), Yu € U. Further, &t is
called a local solution if there exists a neighborhood V(i) of &t in U such that

Ff@) <f(w), VYueUunv(w.
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A functional h: U — R is called weakly lower semicontinuous (w.l.s.c) if for every weakly
convergent sequence u, — uin U it follows that

h(u) < liminf h(u,).

n—oo

Theorem

If f: U — Risw.ls.cand
lim f(u) =+o0 ®

llully—o0

then f has a global minimum.

Proof

Let {u, Fren be a minimizing sequence, i.e. {u,} C U and lim,,—, f(un) = infycy f(w).
Thanks to (8) it follows that the sequence {uy, } is bounded. Since U is reflexive, there exists a
subsequence {unk} keN Which converges weakly to a limit iz as ik — co. Due to the weakly
lower semi continuity of f it follows that

J(@) < liminf fun,) = inf f(w).

Consequently, w is a global minimum.
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Example =M
M
. 1 2 Q2 6
mind(y, u) = §Hy_ Zd”LZ(Q) + 5”””1](9)» (69)
subject to:
—Ay=u in €2, (6b)
y=0 onT, 6c)

where Q0 C R" is a bounded Lipschitz domain, « > 0, z4 € L*().

Control space: U = L?(2) and, there exists for each u € U a unique weak solution for (6b) —-
(6C). The reduced functional f: U — R satisfies

S = J(y(w),w) > 5 |ull}

and, consequently, is bounded from below and satisfies (5). Moreover f is convex and
continuous, and, therefore, w.l.s.c. Consequently, there exists an optimal solution for (6).
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Differentiability in Banach spaces Mat©

Let U, V be two real Banach spaces and F: U — V a mapping from U to V.

Directional derivative
If for given elements u € U, h € U the limit

F/(u; h) = lim %(F(u + th) — F(w))

exists, then F'(u; h) is called the directional derivative of F at w in direction h. If this limit exists
for all h € U, then F is called directionally differentiable at u.

39/81
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Differentiability in Banach spaces Mat

Let U, V be two real Banach spaces and F: U — V a mapping from U to V.

Directional derivative
If for given elements u € U, h € U the limit

F/(u; h) = lim %(F(u + th) — F(w))

exists, then F'(u; h) is called the directional derivative of F at w in direction h. If this limit exists
for all h € U, then F is called directionally differentiable at u.

Gdateaux derivative
If forsome u € U and all h € U the limit

F/(u; h) = lim %(F(u + th) — F(w)

t—0

exists and if F/(u; h) is a continuous linear mapping from U to V with respect to h, then F'(u)
and is called the Gateaux derivative of F' at u, and F is called Gateaux differentiable at w.
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Example 1 Mat = I\]
Let U = C[0, 1] and f: U — R given through

Su()) = sin(u(1)).

Let also h = h(x) be a function from C[O0, 1]. The directional derivative of f at u in direction h
is then given by

lin — (e + ) — () = lim —(sin(u(1) + th(1)) — sin(u(1)))
= % sin(u(1) + th(l))|t:0
= cos(u(1) + th(1))h(1)| _,
= cos(u(1))h(1).

Therefore, f'(u; h) = cos(u(1))h(1) and since f’(u) is linear and continuous with respect to
h, f is Gateaux differentiable with its derivative given by

S (u)h = cos(u(1))h(1).
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Example 2

Let H be a Hilbert space with scalar product (-, <)y and norm ||-|| ;. Let f: H — R be
defined by

2
S(w) = fully-
The directional derivative of f at h in derivation h is given by
Jim — th — lim th||> >
lim —(f(u+ th) = f(w)) = lim = (fJu+ thl; = ull;)
T 2 (|12
fk%;@ﬂ%mH+tHMM
= 2(u, h)H

Therefore f’(u; h) = 2(u, h)y. which is linear and continuous whit respect to h.
Consequently, f is Gateaux differentiable with

S (wh =2u,

(upon identification of H and H').

Mode

Mat M
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Fréchet derivative
If F is Gateaux differentiable at u € U and satisfies in addition that

lim |F(u+ h) — F(u) — F'(u)hl|,
l[ull ;=0 IRl

:O’

then F’/(h) is called the Fréchet derivative if F at u and F is called Fréchet differentiable af w.

v
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Fréchet derivative
If F is Gateaux differentiable at u € U and satisfies in addition that

i WFtR) = F(u) - F'(wh,
llull,;—0 IRl

=0,

then F’(h) is called the Fréchet derivative if F af u and F is called Fréchet differentiable at u.

4

Q@ If Fis Fréchet differentiable at some u € U, then it is continuous at w.
@ ChainRule: Let F: U — V and G: V — Z be Fréchet differentiable at u and F(u),

respectively. Then
E(u) = G(F(u))

is also Fréchet differentiable and its derivative is given by
E'(u) = G'(F(u)) o F'(u).

@ If F: U — V is Fréchet differentiable and F': U — L(U, V) is also F-differentiable,
then F is called twice F-differentiable and we write

F'(u) e L(U,L(U,V))

for the second derivative of F at u.
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Mode

Optimality condition Mat

Let S C U be a nonempty subset of a real normed space U and f: S C U — R a given
functional, bounded from below. Consider the following problem:

1111161151j(u) )

Definition
For u € S the direction v — u € U is called admissible if there exists a sequence {&,, }ren with
0<ée,—>0asn—ooand u+e,(v—u) € Sforevery n € N.

.

Theorem

Suppose that 1 € S'is a local solution of (7) and that v — @ is an admissible direction. If f is
directionally differentiable at u in direction v — u, then

f(w,v—1u) > 0.

Corollary
Let S = U and u a local optimal solution for 7. If f is Gateaux differentiable at i1, then

f(a)h =0, forall h € U.
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@ Optimality systems

Q Theory of PDE Constrained Optimization
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Standing assumptions

Let us now turn fo PDE constrained optimization problems and recall problem (P):

minJ(y, w),
subject to:

e(yv u) =0,

or, in reduced form (IR),

min f(u) := J(y(u), u).

We assume thatJ: Y X U — Rand e: Y x U — W are continuously Fréchet
differentiable. We further assume that the partial derivative of e with respect to y at
(g, ) = (y(), i) satisfies the following condition:

ey (g, ut) isinvertible.

Mode

Mat M

®
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Definition
An element p € W' is called the adjoint state related to it if it solves the following adjoint
equation:

ey (y(w), )" p=Jy (y(), ), )
(y(w), ).

where e, (y(it), it)" denotes the adjoint operator of e, (y

Theorem (Optimality System)

Let i be a local optimal solution for (R) and y(i1) its associated state. If (8) holds, then there
exists an adjoint state p € W’ such that the following system of equations is satisfied.

e(y(n),u) =0 (100)
ey (y(n), )” p = Jy, (y(u), u) (100)
(y(a),ﬂ)* =dJdy (a)va) (]OC)
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Proof

By taking the derivative, with respect to u in direction h, on both sides of the state equation
e (y(uw), u) = 0, we obtain that

ey (y(u), u) Y (u) + ey (y(u), u) h = 0. an
If u € U is alocal optimal solution for ('R,) we obtain the following necessary condition
Sl(@h = (Jy(g(n), w), y' (@)h)yy + Ju (y(a,u)) h =0, VYheU. a2

Using the adjoint equation,

Consequently,
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Mode

Example Mat =\

Consider the heating problem given by

mind(y,u) = 3 [ly — Zd||i2(sz) +3 ||u||i2(ﬂ) ’
subject to:
_Ay = u in Q,
y=20 onI.

The variational formulation of the state equation is given by

/Vy-Vudx: u-vdx, Vve H)(Q).
Q Q
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Consequently, e: H}(Q) x L*(2) — H™Y(Q) = (H}(Q))" is defined by
(e(y,u),v)g-—1 g = / Vy- Vvdx—/ uv dx
Q Q
and its partial derivative with respect to y is given by

<ey(y> u)w7 U> = /QVU)-Vde.

For a given function ¢ € H™'(£2), equation

<ey(y7 u)w7 v>H_17H5 - /va -Vuodx = <(p’ U>H_1,Hé

has a unique solution and ||w\|Hé < Cll¢]| -1 for some constant C > 0 (Lax-Milgram
Theorem). Consequently, (8) is satisfied.
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In order to apply the Theorem we compute the remaining derivatives:

eu(y,u)h = h,
Jy(y, Ww =y — zq,
Ju(y, u) = au.

The optimality system is then given through:

/Vy'Vvdx—/uvdx7 Vv € Hy(Q),
Q e

/ Vp - Vudx = /(y — zg)vdx, Yve H&(Q%
Q Q
au+p=0, a.e.in 2,

where we used that
<ey Jw, v /Vw Vuvdx = /Vu Vwdx = <w ey(y, u)* v >H57H_1
and, similarly,
(005 )1 )y = [ e = (3" 0).
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Lagrangian derivation

Consider again problem (P) withJ: Y x U — Rand e: Y x U — W. The Lagrangian
functional is given by

L:YXUxW — R
(yv uvp) — ﬁ(yv uvp) :J(ya u) - <p7 e(yv u)>W’7W‘

By differentiating L(y, u, p) with respect to y in direction w we obtain that

Ly(y,u,p) = Jy(y, u)w — (p, e,(y, \)w)w,w
= Jy(y, w)w — (ey(y, u)*p, W)y y.

Consequently, equation (10b) can also be expressed as

Ly(y,u, p) = 0.

Mode

Mat

M
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In a similar manner, by taking the derivative of L(y, u, p) with respect to u, in direction h, we
obtain

Ey(kh u7p>h = Ju(y7 u)h - <p7 eu(y7 u)h>W’,W

- Ju(y7 u)h - <eu(y> u)*p7 h>U’,U
and, therefore equation (10C) can be written as

(13a)
(13b)
(13c)
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Semilinear example Mode

) L Mat M
Rigorous derivation M

min J(y,u) = % lly — ZdHiZ(Q) + g HuHiZ(Q) ’
subject tfo:
_Ay + y3 =-u in Q,
y=20 onI.

Weak formulation of the PDE. Multiplying the state equation by a test function
v € C5°(€2) and infegrating yields

—Ayvdx—I—/ySvdx: uv dx.
JQ

JQ JQ
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Using integration by parts,

/Vy-Vvdx+/y3vdx:/uvdx.
Q Q Q

Since C3° is dense in H} (£2) and all terms are continuous with respect to v in the H} () norm,
we obtain the following variational formulation: Find y € H} (2) such that

/ Vy-Vudx—i—/ ysvdx:/ wdx, Vv € Hy(9).
Q Q Q
Consequently, e: H} (Q) x L?*(2) — H~ () is defined by

Vy-Vvdx—}—/ySvdx— uv dx,
Q Q

(e(y, u), v) g1 _/

Q

forallv € H& (Q) By monotone operator theory, there exists a unique solution.
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Derivatives. The partial derivatives of e(y, u) are given by
<ey(ya u)wa U>H—1’Hé = / Vw-Vuvdx+ 3/ yzwu dx,
Q Q
<eu(y7 u)h7 U>H*17Hé — _/ hv dx.
Q

Differentiability. Since y € H} (2) — L%(€2), we consider the operator

N: L5(Q) — L%(Q)
y —

The derivative of N is given by
N'(y)w = 3y%w.

Indeed,
[(y+w)?® =y = 32w, = [|Byw” + u’|| ,
< 3lylle Nl + uwlZe = 0 (1wl

= o([[wls)-
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Lagrangian. The Lagrangian is defined by:

1 (6] 2
L(y,u,p) = 3 ly— Zd”iz(ﬂ) T3 ez

—/Vy~Vpdx+/y3pdx+/updx
Q Q Q

Taking the partial derivative with respect to the state:
Ly(y,u,p)w = (y — za, w) — / Vw- Vde*S/ y wp dx
Q Q
= /(y—zd)wdx—/ Vp-dex—S/ ypwdx =0
Q Q Q
= / Vp-deerS/ y2pwdx:/(yfzd)wdx
Q Q Q
On the other hand, taking the partial derivative with respect to u we get that:
Ly(y,u,p)h = a(u, h)2q) + / hpdx =0
Q

= au+p=0 aeind
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Optimality system.

/Vy~Vvdx+/ySde:/uvdx, Vv € Hy (),
Q Q Q
Vp~dex+3/y2pwdx_/(y—zd)wdx, Yw € H, (),
Q Q Q
au+p=0 a.e.in Q.
or, in strong form,
~Ay+y’=u in €2,
y=20 onl,
_Ap+3y2p:y—zd inQ,
p=0 onl,

au+p=0 a.e. in Q.
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Q@ Lagrangian formalism

Q Theory of PDE Constrained Optimization
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Mode

Elliptic control problem Mat

Optimal control problem

min J(y,u /|y—zd|zcbc+ /|u|2

subject to:

—Ay=u

y|F=g
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Mode

Elliptic control problem Mat

Optimal control problem

min J(y, u / ly — zql*dx + = / lul*dx
subject to:

— Ay = u (distributed control)
yr=g
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Elliptic control problem

Optimal control problem

min J(y, u / ly — zql*dx + = / lul*dx
subject to:

—Ay=u

yr=g

Mode

Mat

Lagrangian:

£(y,u, p, %) = J(y, ) — /ﬂ p(—Ay—u)— /F =)
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Mode

Necessary condition | Mat
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Mode

Necessary condition | Mat =]

£yw) = [ (y=zaw— [ p(=dw)— [ w
—/S;(y—Za)w—/g;Vp-vaL/F.ng:—A&w

= —Ap=y—zq a4
(‘)7P+£: onT (15)
on

plr = 0. Q6
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Necessary condition |

£yw) = [ (y=zaw— [ p(=dw)— [ w
—/Q(y—zd)w— S;Vp-Vw+/F-ng:—/F-€w

. _[op 0w
~ [+ dpw— [(GF+ono+ [ 957 =0

= —Ap=y—zq

9p
on
p|p =0.

Eu(v):a/uv+/pv:/(au+p)vzo.
Q 0 Q

+£=0 onT

Mode

Mat M

a4
(15
16)
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Mode

Necessary condition | Mat =]

£yw) = [ (y=zaw— [ p(=dw)— [ w
—/Q(y—zd)w— S;Vp-Vw+/F-ng:—/F-€w
:/fl(y—zd+Ap)w—/F(gfl+€)w+/;p?:=0

= —Ap=y—zq a4
@+£:O onT (15)
on
plr = 0. 16)

Eu(v):a/uv+/pv:/(au+p)vzo.
Q 0 Q

= au+p=0. an
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Mode

Optimality system: Mt

_Ay=
S (state equation)
yr=g
“Ap=uy—
== (adjoint equation)
plr=0
au+p=0 (optimality condition)
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Parabolic control problem

Problem

min J(y, u :%

Ot—n

Jly—zal*+
Q
subject to:
—Ay=f
yr=u
y(o) = Yo,

where y is the state and u the control.

T
2 J lul®
0 Q

Mode
Mat
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Mode

Parabolic control problem Mat

Problem

min J(y, u :%

Ot—n

T
Jly=zal+35 [ [ |ul
Q 0Q
subject to:

—Ay=f
yr=u
y(o) = Yo,

where y is the state and u the control.

Lagrangian:

T T

Ly up&0) = w - [ o -ay-p)+ [ [ey-w+ [060)-v0)

0 Q o r Q
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Adjoint equation | Mat =|\]

o= | s [ oG [ @ [[ e [oouio

11111



Adjoint equation | Mat =|\]

o= fwm = [ [ G [ @ [ [ oo

[ [ [ [ wr) - po)-wio) - [ 9w
//vaw//F //§w+/9w

66666



Adjoint equation | Mat =|\]

o= | fmwn= [ o Gi [ [ [[ [ [oruo

//y Za /[ ) (™)~ p(0) - w(o) ~ | gff w]
//VPV”’*// 2o [ fews [0ow0

//Q<y z++Ap> //<_5>
//p (911_! +b/<<)+e> w(0).
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Adjoint equation Il

dp
5 " AP=u-z
%:f enl
plr=0
p(T) =0

Mode
Mat

(18)

aa
(20
@n
(22)

M
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[ fou- [ feo- frm-a

= ou—§=0 onl. (23



Optimality system:

Mode
Mat

(state equation)

(adjoint equation)

(optimality condition)

v
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Q@ Second order sufficient optimality
condition

Q Theory of PDE Constrained Optimization

64/81



Theorem

Let U be a Banach space and S C U a convex set. Let f: U —> R be twice continuously
F-differentiable in a neighborhood of 1 € U. If u satisfies the necessary condition

f(u)(u—1u) >0, Vues, 24)
and there exists some J > O such that
F(Wu—a] >6|ul?, Yueu, 25)
then there exist contstants ¢ > 0 and o > O such that
S(W) > (@) + o Ju—al?

foralu € S: ||u— ul;, < e Therefore, & is a local minimun of f on S.
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Since f is twice Fréchet differentiable, a Taylor expansion can be used. Consequently, for
some 6 € [0, 1]

F(u) = £ (@) + (@)~ @)+ o+ 6~ )[u -
> (@) + =" (@ + 0w — ))[u — a? oy (24)
= f(@) + S @l = o [ @+ 0 ) — (@) [u - .
Since f is twice continuously Fréchet differentiable, there exists some € > 0 such that

ot — g < € = [+ 0w — ) ()} [~ 0P| < Ju—

Consequently,
1 1 ([ — = -
S(u) > f(@) + (@ - = o Ju =l
> (@) + 2 u—af?, oy (25).

s

The result follows by choosing o =
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Theorem

letdJ: Y XU — Rande: Y x U— W be twice continuously F-differentiole. Let (g, &, p)
be a solution to the optimality system (10). If there exists some constant § > 0 such that

([, W) > SR, (88C)
for all (w, h) € Y x U that satisfy the equation
ey(g, n)w+ ey (g, u)h =0,
then there exist constants € > 0 and o > 0O such that
J(y,u) 2 J(G,a) + o lu—aly

foraluec U: |lu—ul, <e
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Mode

Equivalence of (SSC) Mat =|\]

The (SSC) condition can be equivalently expressed as,

e (s ) ()

forall (w, h) € Y x U that satisfy the equation

\EL:\
&
=
|
o

ey(gv a)w =+ eu(
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Mode
Example Mat

Consider again the optimal control problem

. 1 2 & 2
min J(y, u) = 2 ||y - ZdHLz(Q) + 9 Hu||L2(Q) )
subject to:

/Vy-Vudx+/y3vdx:/ wdx, Yve Hy(Q).
% e 0

Recall that the first derivatives are given by
{ey(y, W)w, V)y-1,1g = / V- Vudx+3/ v wv,
@ Q
<ey(y7 u)h, U>H717Hé — _/ hvdx
Q

and the second derivatives are given by

(ewfun i v), -y =6 [ yutoas,
eyu(y’ u) =0, euy(y, u) =0, euu<y> u) =0.
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For the quadratic cost functional we get:

Jyy(gv a)[w]z - HwH?ﬂ(Q) ) Jyu(yu LL) - 07
2
Juy (Y, u) =0, Juu(y, w)[h]? = ||h||L2(Q).

Condition (SSC) is therefore equivalent to

Hw||L2(Q) +ta ||h||L2(Q) -6 ywzp dx > HhHiz(Q) ’
Q

This holds in particular if
/(1 — 6yp)w” dx > 0.
Q
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Q Numerical solution of optimality systems
@ Sequential quadratic programming
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Sequential quadratic programming

Semilinear example

Starting point is the optimality system, which in absence of control constraints is given by

0=F(y,p,u) =

-Ay+y®—u

ylr

—Ap+3yP A —y+zq
plr

au-+p

Mode
Mat
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Sequential quadratic programming Mode
Mat M

Semilinear example M

Starting point is the optimality system, which in absence of control constraints is given by

-Ay+y®—u
ylr
=F(y,p,u) = —Ap+ 32 A —y+zq
p|F
au-+p

Using a Newton iteration for the coupled system F(y, p, u) = 0 yields

—Ady+3y%0, —du=Ay— v’ +u

dylr =10
—Ab, + 3y*, + 6pdy — 8y = Ap—3y* p+y— zq
Splr =0

ady +0p=—au—p

and, hence, the Newton update Y1 = Yn + Oy, Prt1 = Pn + Op, Unp1 = Un + Oy

71/81



Mode

General formulation Mat =\
In general, an optimality system is given by:
'C/(y,u)(Q» u, p) =0,
—e(y,u) = 0.

By applying Newton’s method, we obtain the following linearized system:

Oy = eu (U, We)*Prc — Ju(Yre, i)

( /(/y,u)(yk’ukapk) —e (Yie, we)*
5p e(ykauk>

_e/(ylﬁ uk) 0

> ( Sy ) ey (Y, uk%*Pk = Jy(Yie, te)

Yict1 = Yic + 0y, W1 = U + Oy, Dic+1 = Dk + 0p.
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Mode

General formulation Mat =\
In general, an optimality system is given by:

£/(y,u)(gy u, p) =0,
—e(y,u) = 0.

By applying Newton’s method, we obtain the following linearized system:

L0 Yk ties Pi) - —€ (Y, uie)” ( Oy ) ey(Yrer )" Pre — Jy(Ye, )
< (yiu;’(y ) 0 > i = | el )" P = Julyr, ux)
o Op (Y, we)

Yict1 = Yic + 0y, W1 = U + Oy, Dic+1 = Dk + 0p.

The latter corresponds to the necessary and sufficient optimality condition of the following
linear-quadratic problem:

o1
(gn%n) Eﬁl(lyu) (yk7 Uy, pk) [(6y7 6u)]2 + ‘Cl(y7u)(yk7 Uje, pk)(5y7 5!1)’

subject to:
ey (Ui, We)0y + eu(Yie, tic) 0y + e(yie, we) = 0.
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Mode

SQP properties Mat =\

O If (yk, we) € V(y, ), where (g, ) is an optimal solution to the PDE constrained
optimization problem such that €’ (g, &t) is surjective and

EI(/y,u) (y u, p)[(wa h)}z > K Hhuﬁjv

for some x > 0, and the second derivatives of J and e are Lipschitz contfinuous, then
there exists 5p € W’ such that the update system is well-posed.
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Mode

SQP properties Mat =\

O If (yk, we) € V(y, ), where (g, ) is an optimal solution to the PDE constrained
optimization problem such that €’ (g, &t) is surjective and

L0, (@, @, p)[(w, W)]* > & [|R[f7,

for some xk > 0, and the second derivatives of J and e are Lipschitz continuous, then
there exists 5p € W’ such that the update system is well-posed.

Q@ Since the SQP corresponds to the Newton method applied to the optimality system, it is

also known as Lagrange-Newton approach. Local quadratic convergence of this
approach can be proved similarly as for Newton’s method.
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Mode

SQP properties Mat =\

O If (yk, we) € V(y, ), where (g, ) is an optimal solution to the PDE constrained
optimization problem such that €’ (g, &t) is surjective and

L0, (@, @, p)[(w, W)]* > & [|R[f7,

for some x > 0, and the second derivatives of J and e are Lipschitz contfinuous, then
there exists 5p € W’ such that the update system is well-posed.

Q@ Since the SQP corresponds to the Newton method applied to the optimality system, it is
also known as Lagrange-Newton approach. Local quadratic convergence of this
approach can be proved similarly as for Newton’s method.

@ Control constraints may be included within this framework as well. In that case each
linear quadratic subproblem also contains control constraints for the increments.
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Mode

SQP properties Mat =\

O If (yk, we) € V(y, ), where (g, ) is an optimal solution to the PDE constrained
optimization problem such that €’ (g, &t) is surjective and

L0, (@, @, p)[(w, W)]* > & [|R[f7,

for some x > 0, and the second derivatives of J and e are Lipschitz contfinuous, then
there exists 5p € W’ such that the update system is well-posed.

Q@ Since the SQP corresponds to the Newton method applied to the optimality system, it is
also known as Lagrange-Newton approach. Local quadratic convergence of this
approach can be proved similarly as for Newton’s method.

@ Control constraints may be included within this framework as well. In that case each
linear quadratic subproblem also contains control constraints for the increments.

@ A mesh independence principle can also be proved in this case if the discretization
satisfies some technical assumptions.
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Q Numerical solution of optimality systems

@ Semismooth Newton method
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Nonsmooth optimality system Mode

. . Mat M
Unilateral control constraint M

A nonsmooth approach for the solution of the optimality system consists in considering it as an
operator equation

—Ay+y®>—u

ylr

~Ap+3y°p—y+za
0=F(y,p,u) =

plr =0

au+p+ A, =0

Ap — max(0, A, + c(u — b))

Due to the max function, F is not Fréchet differentiable.

74/81



Nonsmooth optimality system Mode

. . Mat M
Unilateral control constraint M

A nonsmooth approach for the solution of the optimality system consists in considering it as an
operator equation

~Ay+y’—u

ylr

—Ap+3y*p-y+z
0=F(y,p,u) =

plr=0

(Xﬂ+p+)\b:0

Ap — max(0, A, + c(u — b))

Due to the max function, F is not Fréchet differentiable.

Is it possible to define a weaker differentiability notion for such a function such that a Newton
type iterative scheme can be stated?
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Mode

Semismoothness Mat

Definition

Let D be an open subset of a Banach space X. The mapping F : D C X — Z is called
Newton differentiable (semismooth) on the open subset V' C D if there exists a generalized
derivative G : V — L(X, Z) such that

1
lim ——

n—0 ||l |F(x + h) — F(x) — G(x+ h)h|, =0, (26)

forevery x € V.
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Mode

Example Mat =I\]

Consider the absolute value function

f="'R—R
x — |x|.

The function is not differentiable at 0. However, by using the generalized derivative

(x) = -1 ifx<O,
9X)=11  #x>o.

we obtain for the case x = 0 :

@ifh>0: |lx+h[—|x—|n||=0,

@ifh<0: |lx+h|—|x|+]|h||=|-x—h—x+h/=0.
Consequently,

fim 17+ ) = () = gl + R| = 0

and | - | is Newton differentiable.
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Semismooth Newton method

Theorem

Let X be a solution to F(x) = 0, with F Newton differentiable (semismooth) in an open
neighborhood V' containing X. If

HG(X)_IHL(Z,X) =G
for some constant C > 0 and all x € V, then the Newton iteration
Xje+1 = Xje — G(Xk)ilF(Xk)

converges superlinearly to X provided that ||xo — X|| 5 is sufficiently small. If F is strongly
semismooth the convergence rate is quadratic.

Mode

Mat

@7

28)
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Proof
Considering that F(x) = 0 and the iterates given by (28) it follows that

s = Xllx = [ — Glae) ™" F ) — x|

= {1600 ™M (F(%) = Foa) = Gloa) (X = 20) I

< C|IF(x) — F(x) = G(x) (xie = X)| -

@9

Thanks to the Newton differentiability if then follows, for p = % that there exists a ball Bs(x)

such that if x,. € Bs(X), then
_ _ 1 _
X1 = %l < Cpllxe = Xllx = 3 floae =[x -
Consequently, if || xo — X||; < ¢ then x; € Bs(x), Vi > 1, and
kh_fgo % — X[ = 0.

Moreover, from (29) and the Newton differentiability, we get that

o 101 =%l o IFGo) = PE) = Gl e = )l
e =Xy ke Jooc = %I

=0.
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Mode

SSN update Mat =\

In the case of our semilinear optimality system, the semismnooth Newton update looks as follows:

~A§, + 3%, —du=Ay—1v’+u

dylr =0
—A5p+3y2 5p+6yp5y—5y:Ap—3y2p+y—zd
dplr =0

ady +0p+ 0y, = —au—p— XA
Ox — xA(0x + ady) = —Ap + max(0, A\, + a(u — b))

where x 4 stand for the indicator function of the active set A := {x : A\, + a(u — b) > 0}.

Semismooth Newton update
Unt1 = Yn + 6y7 Pnt1 = Pn+ 6p7 Unt1 = Up + 5u7 /\n—H - /\n + 6)\- J
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Mode

Further topics Mat =\

Theory
@ Problems with pointwise state or pointwise mixed control-state constraints
@ Problems constrained by partical differential inclusions (variational inequalities)

@ Problems involving sparsity inducing terms in the cost functional

Numerics

@ Discretization methods and error estimates for the numerical approximation of
PDE-constrained optimization problems and/or optfimality systems

Q Efficient solufion of sparse PDE-constrained optimization problems

@ Reduced space methods for solving PDE-constrained optimization problems Lecture by
Todd Munson
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